
Yamcs Server Manual
Release 5.12.0-SNAPSHOT

Space Applications Services, NV/SA
Leuvensesteenweg 325
1932 Sint-Stevens-Woluwe
Belgium
spaceapplications.com
yamcs.org

Aerospace Applications North America, Inc.
16850 Saturn Ln, Ste 100
Houston, TX 77058
United States of America
aerospaceapplications-na.com

Copyright © 2025 Space Applications Services NV/SA. All rights reserved.

i

spaceapplications.com
yamcs.org
aerospaceapplications-na.com

ii

Contents

1 General Information . 1
1.1 Monitoring and Control Model . 2
1.2 Server Architecture . 3

1.2.1 Instances . 3
1.2.2 Data Links . 3
1.2.3 Streams . 4
1.2.4 Processors . 4
1.2.5 Mission Database (MDB) . 4
1.2.6 Services . 5
1.2.7 Plugins . 5
1.2.8 Stream Archive . 5
1.2.9 Parameter Archive . 5
1.2.10 Buckets . 5
1.2.11 Extension points . 5

1.3 Time in Yamcs . 6
1.3.1 Time Encoding . 6
1.3.2 Wall clock time . 7
1.3.3 Mission Time . 7
1.3.4 Processor Time . 7
1.3.5 Reception Time . 7
1.3.6 Generation Time . 8
1.3.7 Earth Reception Time . 8

2 Server Administration . 9
2.1 Configuration . 9

2.1.1 Server Configuration . 9
2.1.2 Instance Configuration . 10
2.1.3 Configuration Properties . 11

2.2 Logging . 12

3 Mission Database . 15
3.1 Data Types . 15

3.1.1 Parameter types vs Argument types . 16
3.1.2 Integer data type . 17
3.1.3 Float data type . 17
3.1.4 Boolean data type . 18
3.1.5 String data type . 19
3.1.6 Binary data type . 21
3.1.7 Absolute time data type . 22
3.1.8 Enumerated data type . 23
3.1.9 Aggregate data type . 23
3.1.10 Array data type . 23

3.2 Parameter Definitions . 24
3.3 Container Definitions . 24

3.3.1 Container Aggregation . 24
3.3.2 Container Inheritance . 25
3.3.3 Little Endian Parameter Encoding . 25

iii

3.4 Alarm Definitions . 26
3.5 Algorithm Definitions . 26

3.5.1 Triggers . 27
3.5.2 User Libraries . 27
3.5.3 Algorithm Scope . 27
3.5.4 Sharing State . 27
3.5.5 Historic Values . 27
3.5.6 JavaScript algorithms . 28
3.5.7 Python algorithms . 28
3.5.8 Java expression algorithms . 28
3.5.9 Java algorithms . 29
3.5.10 Command verifier algorithms . 29
3.5.11 Data Decoding algorithms . 30

3.6 Command Definitions . 30
3.7 Loading TM/TC Definitions . 30

3.7.1 XTCE Loader . 30
3.7.1.1 Configuration . 30
3.7.1.2 Compatibility . 31

3.7.2 Spreadsheet Loader . 33
3.7.2.1 General Sheet . 34
3.7.2.2 ChangeLog Sheet . 35
3.7.2.3 DataTypes Sheet . 35
3.7.2.4 Parameters Sheet . 39
3.7.2.5 Derived Parameters Sheet . 40
3.7.2.6 Local Parameters Sheet . 40
3.7.2.7 Containers Sheet . 40
3.7.2.8 Algorithms Sheet . 41
3.7.2.9 Alarms Sheet . 43
3.7.2.10 Commands Sheet . 43
3.7.2.11 CommandOptions Sheet . 44
3.7.2.12 CommandVerification Sheet . 45
3.7.2.13 Calibration Sheet . 47

3.7.3 Empty Node . 48

4 Data Management . 51
4.1 Streams . 51
4.2 Generic Archive . 52

4.2.1 Telemetry Packets . 52
4.2.2 Events . 53
4.2.3 Command History . 53
4.2.4 Alarms . 54
4.2.5 Parameters . 55

4.3 Parameter Archive . 56
4.3.1 Archive Filling . 56
4.3.2 Parameter Archive Internals . 56

4.3.2.1 Archive Structure . 57
4.3.2.2 Column Families . 57
4.3.2.3 Segment Encoding . 58
4.3.2.4 Future Work . 58

4.4 Object Archive (buckets) . 59
4.4.1 Buckets . 59

4.4.1.1 Options . 59
4.4.2 Bucket Providers . 60

4.4.2.1 Options . 60

5 Data Links . 61
5.1 Packet Pre-processor . 62

5.1.1 Stream Splitting . 62

iv

5.1.2 Packet pre-processing . 62
5.1.3 Pre-processor Configuration . 65

5.2 Command Post-Processor . 66
5.3 File Polling TM Data Link . 67

5.3.1 Class Name . 67
5.3.2 Configuration Options . 67

5.4 TCP TC Data Link . 67
5.4.1 Class Name . 67
5.4.2 Configuration Options . 68

5.5 TCP TM Data Link . 68
5.5.1 Class Name . 68
5.5.2 Configuration Options . 68

5.6 TSE Data Link . 69
5.6.1 Class Name . 69
5.6.2 Configuration Options . 69

5.7 UDP Parameter Data Link . 69
5.7.1 Class Name . 69
5.7.2 Configuration Options . 70
5.7.3 JSON Example . 70

5.8 UDP TC Data Link . 71
5.8.1 Class Name . 71
5.8.2 Configuration Options . 71

5.9 UDP TM Data Link . 71
5.9.1 Class Name . 71
5.9.2 Configuration Options . 71

5.10 CCSDS Frame Processing . 72
5.10.1 Telemetry Frame Processing . 72
5.10.2 Telecommand Frame Processing . 76

5.10.2.1 Priority Schemes . 78
5.10.2.2 COP-1 Support . 79

5.11 Yamcs Cascading Link . 80
5.11.1 Class Name . 80
5.11.2 Configuration Options . 80

6 Processors . 83
6.1 TM Packet Processing . 83
6.2 Command Processing . 86
6.3 Alarms . 90
6.4 Processor Configuration . 92

6.4.1 Options . 92
6.4.2 Alarm options . 93
6.4.3 TM (container) processing options . 94

6.5 Alarm Reporter . 94
6.5.1 Class Name . 94
6.5.2 Configuration . 95
6.5.3 Configuration Options . 95

6.6 Algorithm Manager . 95
6.6.1 Class Name . 95
6.6.2 Configuration . 95
6.6.3 Configuration Options . 95

6.7 Local Parameter Manager . 95
6.7.1 Class Name . 95
6.7.2 Configuration . 96

6.8 Replay Service . 96
6.8.1 Class Name . 96
6.8.2 Configuration . 96
6.8.3 Configuration Options . 96

6.9 Stream Parameter Provider . 96

v

6.9.1 Class Name . 96
6.9.2 Configuration . 96
6.9.3 Configuration Options . 97

6.10 Stream TC Command Releaser . 97
6.10.1 Class Name . 97
6.10.2 Configuration . 97
6.10.3 Configuration Options . 97

6.11 Stream TM Packet Provider . 97
6.11.1 Class Name . 97
6.11.2 Configuration . 98
6.11.3 Configuration Options . 98

7 Commanding . 99
7.1 Command Significance . 99
7.2 Command Queues . 99
7.3 Transmission Constraints . 100

8 Services . 103
8.1 Global Services . 103

8.1.1 HTTP Server . 103
8.1.1.1 Class Name . 103
8.1.1.2 Configuration . 103
8.1.1.3 Configuration Options . 104

8.1.2 Process Runner . 105
8.1.2.1 Class Name . 105
8.1.2.2 Configuration . 105
8.1.2.3 Configuration Options . 105

8.1.3 TSE Commander . 106
8.1.3.1 Class Name . 106
8.1.3.2 Configuration . 106
8.1.3.3 Configuration Options . 106
8.1.3.4 Mission Database . 108
8.1.3.5 Telnet Interface . 110

8.1.4 Replication Server . 110
8.1.4.1 Class Name . 110
8.1.4.2 Configuration . 110
8.1.4.3 Configuration Options . 111

8.2 Instance Services . 111
8.2.1 Alarm Recorder . 111

8.2.1.1 Class Name . 111
8.2.1.2 Configuration . 111

8.2.2 Command History Recorder . 112
8.2.2.1 Class Name . 112
8.2.2.2 Configuration . 112

8.2.3 Event Recorder . 112
8.2.3.1 Class Name . 112
8.2.3.2 Configuration . 112

8.2.4 CCSDS TM Index . 112
8.2.4.1 Class Name . 113
8.2.4.2 Configuration . 113
8.2.4.3 Configuration Options . 113

8.2.5 Parameter Archive Service . 113
8.2.5.1 Filling the parameter archive . 113
8.2.5.2 Class Name . 114
8.2.5.3 Configuration . 114
8.2.5.4 General Options . 115
8.2.5.5 Backfiller Options . 115
8.2.5.6 Realtime filler Options . 117

vi

8.2.6 Parameter List Service . 117
8.2.6.1 Class Name . 118
8.2.6.2 Configuration . 118
8.2.6.3 Configuration Options . 118

8.2.7 Parameter Recorder . 118
8.2.7.1 Class Name . 118
8.2.7.2 Configuration . 118
8.2.7.3 Configuration Options . 118

8.2.8 Configuration Options . 119
8.2.9 Parameter Cache options . 119
8.2.10 Processor Creator Service . 119

8.2.10.1 Class Name . 120
8.2.10.2 Configuration . 120
8.2.10.3 Configuration Options . 120

8.2.11 Replay Server . 120
8.2.11.1 Class Name . 120
8.2.11.2 Configuration . 120

8.2.12 System Parameters Service . 120
8.2.12.1 Class Name . 120
8.2.12.2 Configuration . 121
8.2.12.3 Configuration Options . 121

8.2.13 XTCE TM Recorder . 121
8.2.13.1 Class Name . 121
8.2.13.2 Configuration . 121
8.2.13.3 Configuration Options . 121

8.2.14 Time Correlation Service . 122
8.2.14.1 Accuracy and validity . 122
8.2.14.2 Verify Only Mode . 122
8.2.14.3 Usage . 123
8.2.14.4 Time of flight estimation . 123
8.2.14.5 Class Name . 123
8.2.14.6 Configuration . 123
8.2.14.7 Configuration Options . 123

8.2.15 Timeline Service . 124
8.2.15.1 Class Name . 124
8.2.15.2 Configuration . 124
8.2.15.3 Configuration Options . 124

8.2.16 Replication Master . 125
8.2.16.1 Class Name . 126
8.2.16.2 Configuration . 126
8.2.16.3 Configuration Options . 126

8.2.17 Replication Slave . 127
8.2.17.1 Class Name . 127
8.2.17.2 Configuration . 127
8.2.17.3 Configuration Options . 127

8.2.18 CCSDS File Delivery Protocol (CFDP) . 128
8.2.18.1 Usage . 130
8.2.18.2 Class Name . 131
8.2.18.3 Configuration . 131
8.2.18.4 Configuration Options . 131

8.2.19 File listing service . 135
8.2.19.1 Class Name . 135
8.2.19.2 Configuration . 135
8.2.19.3 Configuration Options . 135
8.2.19.4 Parser Configuration Options . 135

8.2.20 CFS Event Decoder . 136
8.2.20.1 Class Name . 136
8.2.20.2 Configuration . 136

vii

8.2.20.3 Configuration Options . 137
8.2.21 Alarm Mirroring . 137

8.2.21.1 Class Name . 137
8.2.21.2 Configuration . 137
8.2.21.3 Configuration Options . 138

9 Security . 139
9.1 Configuration . 139
9.2 System Privileges . 140
9.3 Object Privileges . 141
9.4 Superuser . 142
9.5 AuthModules . 142

9.5.1 LDAP AuthModule . 142
9.5.1.1 Class Name . 142
9.5.1.2 Configuration Options . 142

9.5.2 YAML AuthModule . 144
9.5.2.1 Class Name . 144
9.5.2.2 Configuration Options . 144
9.5.2.3 users.yaml . 144

9.5.3 Kerberos AuthModule . 145
9.5.3.1 Class Name . 145
9.5.3.2 Configuration Options . 145

9.5.4 Remote User AuthModule . 145
9.5.4.1 Class Name . 145
9.5.4.2 Configuration Options . 146

9.5.5 Single User AuthModule . 146
9.5.5.1 Class Name . 146
9.5.5.2 Configuration Options . 146

9.5.6 IP Address AuthModule . 146
9.5.6.1 Class Name . 147
9.5.6.2 Configuration Options . 147
9.5.6.3 Example . 147

9.5.7 SPNEGO AuthModule . 147
9.5.7.1 Class Name . 148
9.5.7.2 Configuration Options . 148

9.5.8 OpenID Connect AuthModule . 148
9.5.8.1 Class Name . 148
9.5.8.2 Configuration Options . 148
9.5.8.3 Back-channel Logout . 149
9.5.8.4 Note to third-party developers . 149

10 Web Interface . 153
10.1 Configuration . 153

10.1.1 Global Configuration Options . 153
10.1.2 Instance Configuration Options . 157

10.2 Links . 157
10.3 Algorithms . 157
10.4 Telemetry . 158

10.4.1 Packets . 158
10.4.2 Parameters . 158
10.4.3 Parameter Lists . 158
10.4.4 Displays . 158
10.4.5 Replaying telemetry . 159

10.5 Events . 159
10.6 Alarms . 159
10.7 Commanding . 159

10.7.1 Send a command . 159
10.7.2 Command stack . 160

viii

10.7.3 Command history . 160
10.7.4 Queues . 160

10.8 Procedures . 160
10.8.1 Run a script . 160

10.9 Activities . 160
10.10Timeline . 161

10.10.1 Chart . 161
10.10.2 Views . 161
10.10.3 Bands . 161
10.10.4 Items . 162

10.11Mission database . 162
10.11.1 Parameters . 162
10.11.2 Containers . 162
10.11.3 Commands . 162
10.11.4 Algorithms . 163

10.12Archive browser . 163
10.13Admin Area . 163

10.13.1 Admin Home . 163
10.13.2 Plugins . 165
10.13.3 Access Control . 165

10.13.3.1 Users . 165
10.13.3.2 Service accounts . 165
10.13.3.3 Groups . 166
10.13.3.4 Roles . 166

10.13.4 Client Connections . 166
10.13.5 Services . 166
10.13.6 Processor Types . 166
10.13.7 Databases . 167

10.13.7.1 Tables . 167
10.13.7.2 Streams . 167
10.13.7.3 DB Shell . 167

10.13.8 Replication . 167
10.13.8.1 Inbound . 168
10.13.8.2 Outbound . 168

10.13.9 RocksDB . 168
10.13.9.1 Open databases . 168

10.13.10API Routes . 168
10.13.11Leap Seconds . 169
10.13.12Threads . 169

11 Programs . 171
11.1 yamcsadmin . 171

11.1.1 Synopsis . 171
11.1.2 Options . 171
11.1.3 Commands . 171

11.1.3.1 yamcsadmin backup . 172
11.1.3.2 yamcsadmin confcheck . 173
11.1.3.3 yamcsadmin mdb . 173
11.1.3.4 yamcsadmin password-hash . 173
11.1.3.5 yamcsadmin rocksdb . 174
11.1.3.6 yamcsadmin users . 174

11.2 yamcsd . 176
11.2.1 Synopsis . 176
11.2.2 Description . 176
11.2.3 Options . 176
11.2.4 Environment . 177
11.2.5 Log Config Example . 177

11.3 Systemd Unit File . 178

ix

11.4 packet-viewer . 178
11.4.1 Synopsis . 178
11.4.2 Description . 179
11.4.3 Options . 179
11.4.4 Examples . 179
11.4.5 Configuration Files . 180

11.4.5.1 mdb.yaml . 180
11.4.5.2 packet-viewer.yaml . 180

11.4.6 Packet Filter . 181
11.4.6.1 Filter on packet properties . 181
11.4.6.2 Filter on parameter presence . 181
11.4.6.3 Filter grammar . 181

12 Configuration Sections . 183

13 Command Options . 185
13.1 Registration . 185
13.2 Types . 186
13.3 Permissions . 186

14 Yamcs Plugin Format . 187
14.1 Main configuration file . 187
14.2 Plugin metadata . 187

A SQL Language . 189
A.1 Identifiers . 189
A.2 Literals . 189

A.2.1 Integer Literals . 189
A.2.2 Float Literals . 189
A.2.3 String Literals . 189

A.3 Operators . 190
A.4 Object Names . 190
A.5 Expressions . 190
A.6 Functions . 192

A.6.1 COALESCE() . 192
A.6.2 UNHEX() . 192
A.6.3 EXTRACT_SHORT() . 192
A.6.4 EXTRACT_USHORT() . 192
A.6.5 EXTRACT_INT() . 192
A.6.6 EXTRACT_U3BYTES() . 192
A.6.7 COUNT() . 192
A.6.8 SUBSTRING() . 192
A.6.9 SUM() . 193

A.7 Statements . 193
A.7.1 ALTER SEQUENCE Statement . 193
A.7.2 ALTER TABLE Statement . 193
A.7.3 CLOSE STREAM Statement . 193
A.7.4 CREATE TABLE Statement . 193
A.7.5 CREATE STREAM Statement . 195
A.7.6 DELETE Statement . 195
A.7.7 DESCRIBE Statement . 195
A.7.8 DROP TABLE Statement . 195
A.7.9 INSERT Statement . 195
A.7.10 SELECT TABLE Statement . 195
A.7.11 SHOW DATABASES Statement . 196
A.7.12 SHOW ENGINES Statement . 196
A.7.13 SHOW SEQUENCES Statement . 196
A.7.14 SHOW STREAMS Statement . 196
A.7.15 SHOW TABLES Statement . 196

x

A.7.16 UPDATE Statement . 196

Index . 199

xi

1. General Information

Yamcs Server, or short Yamcs, is a central component for monitoring and controlling remote devices. Yamcs
stores and processes packets, and provides an interface for end-user applications to subscribe to realtime or
archived data. Typical use cases for such applications include telemetry displays and commanding tools.

Yamcs ships with an embedded web server for administering the server, the mission databases or for basic
monitoring tasks. For more advanced requirements, Yamcs exposes its functionality over a well-documented
HTTP-based API.

Yamcs is implemented entirely in Java, but it does rely on an external storage engine for actual data archiving.
Currently the storage engine is RocksDB1. The preferred target platform is Linux x64, but Yamcs can also be
made to run on Mac OS X and Windows.

1 http://rocksdb.org/

1

http://rocksdb.org/

1.1 Monitoring and Control Model

Yamcs implements a fairly traditional Monitoring and Control Model. The remote system is represented
through a set of parameters which are sampled at regular intervals.

Yamcs assumes that parameters are not sent individually but in groups which usually (but not necessarily)
are some sort of binary packets. Yamcs supports basic parameter types (int, long, float, double, boolean,
timestamp, string, binary) and also aggregate types (aka structs in C language) and arrays.

Parameters can either be received directly from the remote device or can be computed locally by algorithms.
Algorithms in Yamcs can be implemented in Javascript or Python. Other languages that have JVM (Java
Virtual Machine) based implementations could also be supported without too much trouble.

Following XTCE conventions, Yamcs distinguishes between:

telemetered parameters
coming from remote devices

derived parameters
computed by algorithms inside Yamcs

local parameters
set by end-user applications

constant parameters
constant values defined in the mission database

In addition to these XTCE-inspired parameter types, Yamcs defines:

system parameters
parameters generated by components inside Yamcs

command and command history parameters
Specially-scoped parameters that can be used in the context of command verifiers.

The parameters have limits associated to them and when those limits are exceeded, an alarm is triggered.
The limits can change depending on the context which represent the state of the remote device. The context
itself is derived from the value of other parameters.

An operator is informed of the triggered alarm in various ways depending on the end user application con-
nected to Yamcs (e.g. red background in a display, audible alarm, SMS, phone call, etc). After understanding
the problem, the operator acknowledges the alarm, which means that it informs Yamcs that the alarm will
be taken care of. This action - depending again on the remote end user application connected to Yamcs -
means that other operators are not bothered anymore by the alarm.

After the alarm has been acknowledged and the parameter goes back into limits, the alarm is cleared which
means it is not triggered anymore. Before the alarm is acknowledged by an operator, it will stay triggered
even if the parameter goes back into limits. An exception to this case is auto-acknowledging alarms which
are cleared automatically when the parameter that triggered them goes back in limits.

As parameters are expected to be sampled regularly, they also have an expiration time. After the time is
exceeded, the parameters become expired. This means that the state of the remote device is considered
unknown.

The remote device is controlled through the use of (tele)-commands. A telecommand is made up of a name
and a number of command arguments. In order for a command to be allowed to be sent, the command
transmission constraints (if any) have to be met. The constraints are expressed by the state of param-
eters (e.g. a command can be sent only if a subsystem is switched on). Some commands can have an
elevated significance, which may mean that a special privilege or an extra confirmation is required to send
the command.

Once the command has been sent, it passes through a series of execution stages. XTCE pre-defines a
series of stages (TransferredToRange, SentFromRange, Received, Accepted, etc). Yamcs does not enforce
the use of these predefined stages, the user is free to choose any number of random stages. Each stage
is associated to a command verifier. This is an algorithm that will decide if the command has passed that
stage or not. It is also possible to specify that the stage has passed when a specific packet has been received.

2

The command text (command name and argument values), the binary packet (if binary formatted) and the
different stages of the execution of the command are recorded in the command history.

Yamcs does not limit the information that can be added to the command history. This can be extended with
and arbitrary number of (key, timestamp, value) attributes.

1.2 Server Architecture

The Yamcs server runs as a single Java process and it incorporates an embedded HTTP server implemented
using Netty.

The main components are depicted in the diagram below.

1.2.1 Instances

The Yamcs instances provide means for one Yamcs server to monitor/control different payloads or satellites
or version of the payloads or satellites at the same time.

Most of the components of Yamcs are instance-specific.

1.2.2 Data Links

Data Links are components that connect to the target system (instruments, ground stations, lab equipment,
etc). One Yamcs instance will contain multiple data links. There are three types of data received/sent via
Data Links:

• Telemetry packets. These are usually binary chunks of data which have to be split into parameters
according to the definition into a Mission Database.

• Telecommands. These are usually the reverse of the telemetry packets.

• Parameters. These are historically (ISS (International Space Station) ground segment) called also pro-
cessed parameters to indicate they are processed (e.g. calibrated, checked against limits) by another
center.

3

netty.io

Connecting via a protocol to a target system means implementing a specific data link for that protocol. In
Yamcs there are some built-in Data Links for UDP and TCP. SLE (Space Link Extension) data links are also
implemented in a plugin.

The pre-processors run inside the TM data links and are responsible for doing basic packet processing (e.g.
verifying a CRC or checksum) which is not described in the Mission Database.

The post-processor runs inside the TC data link and are responsible for doing command processing (e.g.
computing a CRC or checksum) which is not described in the Mission Database.

Please note in the picture above that while for telecommands there is a link sending realtime data, for teleme-
try we also have a data link retrieving dump data - this is data that has been recorded somewhere (on the
spacecraft or some other intermediate point) and dumped later. Usually there is no continuous visibility of
the spacecraft from the ground and thus most spacecrafts are capable of recording data onboard. The dump
data will not be sent to the realtime displays (because the display shows the realtime data coming in parallel)
but it will be sent to the archive where it has to be merged with the old data and with the realtime incoming
data.

Yamcs does not define the dump data as a special type of data, it is the configuration of which data is sent on
which stream and which stream is connected to which processor (see below what streams and processors
are) that determines what dump data is.

The CCSDS standards specify a higher level entity called transport frame. Typically the telemetry transfer
frames are fixed size and the variable size packets are encoded in the fixed size frames using a well defined
procedure. The packets can be multiplexed on the same transmission channel with other types of data such
as a video bitstream. The frames allows also multiplexing realtime data with dump data. In order to maintain
a constant bitrate required for RF communication, the standards also define the idle data to be sent when no
other data is available.

In Yamcs, all the CCSDS frame processing is performed at the level of Data Links - when frame processing
is used, there is a data link that receives the frame (e.g. via SLE) and then demultiplexes it into multiple
sub-links which in turn apply the pre-processor for TM and send the data on the streams to the processors
and archive. There is a sub-link (or more) for realtime data and similarly a sub-link (or more) for dump data.
Yamcs handles packets and parameters, other type of data (e.g. video) could be sent to external systems for
processing and storage.

1.2.3 Streams

Streams are components inside Yamcs that transport tuples. They are used to de-couple the producers from
the consumers, for example the Data Links from the Processors. The de-coupling allows the user to change
the data while being passed from one component to another.

1.2.4 Processors

The Yamcs processor is where most of the monitoring and control functions takes place: packets get trans-
formed into parameters, limits are monitored, alarms are generated, commands are generated and verified,
etc. There can be multiple processors in one instance, typically one permanently processing realtime data
and other created on demand for replays.

In particular, the Parameter Archive will create regularly a processor for parameter archive consolidation. This
is required in order to process the data received in dump mode (see above) which does not pass through a
realtime processor.

1.2.5 Mission Database (MDB)

The Mission Database contains the description of the telecommands and telemetry including calibration
curves, algorithms, limits, alarms, constraints, command pre and post verification.

4

1.2.6 Services

A service in Yamcs is a Java class that implements the org.yamcs.YamcsService2 interface. The services
can be:

• global meaning they run only once at the level of the server; their definition can be found in etc/yamcs.
yaml. One such service is the HTTP Server (page 103).

• instance specific meaning that they run once for each Yamcs instance where they are included; their
definition can be found in etc/yamcs.instance.yaml.

• processor specific meaning they run at the level of the processor; their definition can be found in etc/
processor.yaml.

User can define their own services by adding a jar with an implemented java class into the Yamcs lib/ext
directory.

1.2.7 Plugins

A plugin in Yamcs is a Java class that implements the org.yamcs.Plugin3 interface. The plugin classes are
loaded by the Yamcs server at startup before starting any instance.

Although not required, it is advised that the user creates a plugin with each jar containing mission specific
functionality. This will allow to see in the Yamcs web the version of the plugin loaded; the plugin is also the
place where the user can register new API endpoints.

1.2.8 Stream Archive

The Stream Archive is where tuples can be stored. This is a realtime archive, data is inserted as soon as it is
received from a stream. It is optimized for storing data sorted by time.

1.2.9 Parameter Archive

The Parameter Archive contains values of parameters and is optimized for retrieving the value for a limited
set of parameters over longer time intervals. The archive is not realtime but is obtained by creating regular
replays transforming data from the stream archive via a processor. Whereas the basic storage unit of the
stream archive corresponds to data at one specific time instant (e.g. a telemetry packet, a set of parameters
with the same timestamp), the basic storage unit of the parameter archive is a set of values of one parameter
over a time interval.

1.2.10 Buckets

Buckets are used for storing general data objects. For example the CFDP service will store there all the files
received from the on-board system. As for most Yamcs components, there is an HTTP API4 allowing the user
to work with buckets (get, upload, delete objects).

1.2.11 Extension points

In the diagram above, there are some components that have a build symbol; these is where we expect
mission specific functionality to be added:

2 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/YamcsService.html
3 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/Plugin.html
4 https://docs.yamcs.org/yamcs-http-api/buckets

5

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/YamcsService.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/Plugin.html
https://docs.yamcs.org/yamcs-http-api/buckets

• new data links have to be implemented if the connection to the target system uses a protocol that is not
implemented in Yamcs.

• packet pre-processor and command post-processor are components where the user can implement
some specific TM/TC headers, time formats etc.

• the Mission Database (MDB) contains the description of telecommands and telemetry and is entirely
mission specific.

• user defined streams can implement command routing or basic operations on packets (e.g. extracting
CLCW from a TM packet).

• user defined services can add complete new functionality; an example of such functionality is to as-
semble telemetry packets into files (this is what the CFDP service does, but if the user's system does
not use CFDP, a new service can be developed).

• finally plugins can be used to group together all the mission specific functionality.

1.3 Time in Yamcs

The text below documents several aspects of working with time in Yamcs.

1.3.1 Time Encoding

Yamcs uses signed eight-byte integers (long in Java) for representing milliseconds since 1-Jan-1970 00:00:00
TAI, including leap seconds. The Yamcs time in milliseconds is the UNIX time (in milliseconds) + leap sec-
onds.

To convert accurately between TAI and UTC, a leap second table is used. Yamcs parses this information from
the configuration file etc/UTC-TAI.history in IERS (International Earth Rotation and Reference Systems
Service) format:

• https://hpiers.obspm.fr/iers/bul/bulc/UTC-TAI.history

Upcoming leap seconds are announced biannually in Bulletin C publications:

• https://www.iers.org/IERS/EN/Publications/Bulletins/bulletins.html

The user is responsible for updating manually this file if it changes (when new leap seconds are added).
Fortunately this is not very often and new leap seconds are announced well in advance. For example there
has been no new leap second between 2017 and 2023.

Note: If the file is not present, Yamcs uses the leap second information that was valid at the time of the
software release.

When a leap second is announced

1. Download the latest UTC-TAI.history file from IERS.

2. Deploy this file to etc/UTC-TAI.history under the Yamcs directory.

3. Restart Yamcs

4. Verify the leap second table in Admin Area (page 169).

Yamcs also has a high resolution time implemented in the class org.yamcs.time.Instant5. This is represented
as 8 + 4 bytes milliseconds and picoseconds of the millisecond. It is not widely used - in Java it is not even
easily possible to get the time with a resolution better than millisecond.

5 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/time/Instant.html

6

https://hpiers.obspm.fr/iers/bul/bulc/UTC-TAI.history
https://www.iers.org/IERS/EN/Publications/Bulletins/bulletins.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/time/Instant.html

The higher resolution time is sent sometimes from external systems. For example a Ground Station may
timestamp the incoming packets with a microsecond or nanosecond precise time (derived from an atomic
clock). This time is available as the Earth Reception Time via the yamcs-sle plugin.

The class that allows working with times, offering conversion functionality between the Yamcs time and UTC
is org.yamcs.utils.TimeEncoding6.

1.3.2 Wall clock time

The wall clock time is the computer time converted to Yamcs format. The getWallclockTime() function in
TimeEncoding can be used to get the current wallclock time. In practice, in 2024, the following is true:

TimeEncoding.getWallclockTime() = System.currentTimeMillis() + 37000.

Note that Linux usually does time smearing around the leap seconds. This shortens the duration of the
second for several hours prior and several hours post the the leap second, to accommodate the extra second.
Yamcs does not take the smearing into account, therefore the getWallclockTime() does not return entirely
accurate times when the smearing takes place.

1.3.3 Mission Time

The mission time in Yamcs is the current time. For a realtime mission that would be the wall clock time. For
a simulation it would be the simulation time.

The mission time is specific to a Yamcs instance and is given by the org.yamcs.time.TimeService7 configured
in that instance. The time service is configured using the timeService keyword in etc/yamcs.instance.
yaml.

There are two time services implemented as part of standard Yamcs:

• org.yamcs.time.RealtimeTimeService8 - it uses always the wall clock time (the computer time) as the
mission time.

• org.yamcs.time.SimulationTimeService9 - this allows to run a simulated time at arbitrary speeds. The
time can be set externally via the HTTP API10 or from a TM data link. Since Yamcs 5.6.1 it is possible to
synchronize the mission time between two instances on two different Yamcs servers via the replication
service.

Plugins may come with their own implementation of a time service.

1.3.4 Processor Time

The processor time is the time visible in the Yamcs web application. For realtime processors it is the same
as the mission time. For replay processors is the time of the replay, extracted from the packets or parameters
as they are read from the archive.

1.3.5 Reception Time

The reception time is the time associated to data (packets, parameters, events) as it comes into Yamcs. The
reception time is always set to mission time.

6 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/utils/TimeEncoding.html
7 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/time/TimeService.html
8 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/time/RealtimeTimeService.html
9 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/time/SimulationTimeService.html

10 https://docs.yamcs.org/yamcs-http-api/time/set-time

7

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/utils/TimeEncoding.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/time/TimeService.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/time/RealtimeTimeService.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/time/SimulationTimeService.html
https://docs.yamcs.org/yamcs-http-api/time/set-time

1.3.6 Generation Time

The generation time is the time when the data has been generated.

For telemetry packets, it is set by the pre-processor, normally with a time extracted from the packet. However
it can be set to the mission time if the useLocalGenerationTime option is set to true.

The timeEncoding option is used on the TM links to configure how to extract the time from the packet - which
means how to convert a number (or more numbers) extracted from the packet to a Yamcs time. The various
options for time decoding are documented in the Packet Pre-processor (page 62)

Spacecrafts that have no means to synchronize time (e.g. no access to GPS) will usually use a free running
on-board clock (initialized to 0 at startup) to timestamp the packets. In these cases, the on-board time needs
to be correlated with the mission time. The Time Correlation Service (page 122) can be used for this purpose.

Finally, the TM links have an option updateSimulationTime which can be used to set the mission time to
the time extracted from the packet. This works if the SimulationTimeService is used.

1.3.7 Earth Reception Time

The earth reception time is the time a TM packet has been received in a ground station. The TM links are
responsible for setting this on the packet inside Yamcs. For example the SLE TM link (part of the yamcs-sle
plugin) will receive the earth reception time via the SLE protocol.

The earth reception time is a high resolution time which may be used in the process of time correlation.

8

2. Server Administration

2.1 Configuration

Yamcs configuration files are written in YAML format. This format allows to encode in a human friendly
way the most common data types: numbers, strings, lists and maps. For detailed syntax rules, please see
https://yaml.org.

The root configuration file is etc/yamcs.yaml. It contains a list of Yamcs instances. For each instance, a file
called etc/yamcs.instance.yaml defines all the components that are part of the instance. Depending on
which components are selected, different configuration files are needed.

2.1.1 Server Configuration

The number of configuration options in etc/yamcs.yaml are relatively limited. A sample configuration file is
below.

services:
- class: org.yamcs.http.HttpServer

instances:
- simulator

dataDir: /storage/yamcs-data

secretKey: "changeme"

yamcs-web:
tag: DEMO

The following options are supported

services (list)
A list of global services. Users can create their own global services that are unique for the whole Yamcs
instance. The global services description can be found in Global Services (page 103)

instances (list)
A list of instances loaded at Yamcs start. It is also possible to load instances from dataDir/
instance-def directory. The instances created created via the API will be stored there.

dataDir (string)
A directory which will be the root of the Yamcs archive. The directory must exist and it shall be possible
for the user who runs Yamcs to write into it. More information about the Yamcs archive can be found
in Data Management (page 51). In addition to the directories used for the archive, there are two
directories named instance-def and instance-templates which are used for the dynamic creation
of instances.

cacheDir (string)
A directory that Yamcs can use to cache files. Defaults to a directory called cache relative to the
directory where Yamcs is running from.

9

https://yaml.org

secretKey (string)
A key that is used to sign the authentication tokens given to the users. It should be changed immediately
after installation. As of version 5.0.0, Yamcs does not support persisted authentication tokens but this
feature will be available in a future version.

yamcs-web (map)
Configuration of the Yamcs web application. The different options are documented in Web Interface
(page 153)

2.1.2 Instance Configuration

The instance configuration file etc/yamcs.instance.yaml contains most of the options that need to be set
on a Yamcs server.

services:
- class: org.yamcs.archive.XtceTmRecorder
...

dataLinks:
- name: tm_realtime
class: org.yamcs.tctm.TcpTmDataLink
...

mdb:
- type: "sheet"
spec: "mdb/simulator-ccsds.xls"
subloaders:

- type: "sheet"
spec: "mdb/simulator-tmtc.xls"

...

streamConfig:
tm:

- name: "tm_realtime"
processor: "realtime"

- name: "tm2_realtime"
rootContainer: "/YSS/SIMULATOR/tm2_container"
processor: "realtime"

- name: "tm_dump"
cmdHist: ["cmdhist_realtime", "cmdhist_dump"]

timeService:
class: org.yamcs.time.SimulationTimeService

dataPartitioningByTime: YYYY/MM

The following options are supported

services (list)
A list of instance specific services. Each service is specified by a class name and arguments which
are passed to the service at initialization. Services are implementations of YamcsService11. Users can
create their own services; most of the missions where Yamcs has been used required the creation of
at least a mission specific service. More description of available services can be found in Instance
Services (page 111).

dataLinks (list)
A list of data links - these are components of Yamcs responsible for receiving/sending data to a target
system. Sometimes users need to create additional data links for connecting via different protocols
(e.g. MQTT). The available data links are documented in Data Links (page 61)

mdb (list)
The configuration of the Mission Database (MDB). The configuration is hierarchical, each loader having
the possibility to load sub-loaders which become child Space Systems. More information about the
MDB can be found in Mission Database (page 15)

11 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/YamcsService.html

10

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/YamcsService.html

streamConfig(map)
This configures the list of streams created when Yamcs starts. The map contains an entry for each
standard stream type (tm, cmdHist, event, etc) and additionally a key sqlFile can be used to load a
StreamSQL file where user defined streams can be created. More information can be found in Streams
(page 51)

timeService(map)
This configures the source of the "mission time". By default the RealtimeTimeService uses the lo-
cal computer clock as the time source. The org.yamcs.time.SimulationTimeService12 can be used to
simulate a mission time in the past or the future. If configured, the time can be controlled using the
HTTP API13. The updateSimulationTime: true option on a telemetry data link can also be used to
manipulate the simulation time - in this case the time will be set to be the generation time of the packet.

dataPartitioningByTime(String)
One of "none", "YYYY", "YYYY/MM" or "YYYY/DOY" If specified, partition the tm, pp, events, alarms,
cmdhistory tables and the parameter archive by time. For example, specifying YYYY/MM will store
the data of each month into a different RocksdDB database. This option is useful when the archive
is expected to grow very large: the new data will not disturb the old data (otherwise RocksDB always
merges new files with old ones) and data can be spread over multiple filesystems.

2.1.3 Configuration Properties

A file etc/application.properties may be used to define properties. These properties can then be
referenced in any YAML configuration file. This approach can be useful to separate dynamic aspects from
the main configuration file.

For example:

etc/application.properties

IP address of some simulator
simulator.host = 192.168.77.7
simulator.port = 10015

etc/yamcs.instance.yaml

dataLinks:
- name: tm-in
class: org.yamcs.tctm.TcpTmDataLink
stream: tm_realtime
host: ${simulator.host:localhost}
port: ${simulator.port}

YAML configuration values may use properties names in the following notations:

${foo}
Expands to a property value. If the file etc/application.properties exists, a lookup is attempted
for the property foo. If that fails, a lookup is attempted in the standard Java system properties.

An error is generated if the property cannot be found.

${foo:bar}
Same as ${foo}, but defaults to the value bar when the property could not be found.

${env.foo}
Expands to the value of an environment variable, available to the Yamcs daemon. An error is generated
if the environment variable is not set.

${env.foo:bar}
Same as ${env.foo}, but defaults to the value bar when the environment variable is not set.

12 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/time/SimulationTimeService.html
13 https://docs.yamcs.org/yamcs-http-api/time/set-time

11

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/time/SimulationTimeService.html
https://docs.yamcs.org/yamcs-http-api/time/set-time

${foo:${bar}}
Same as ${foo}, but defaults to the value of the bar property.

Note: When properties are defined, the configuration file must remain valid YAML. This may sometimes
require surrounding the YAML value with explicit string quotes. The following two notations are identical:

• host: ${simulator.port}

• host: "${simulator.port}"

2.2 Logging

Yamcs allows capturing runtime log messages at different verbosity levels to different output handlers.

By default, if unconfigured, Yamcs will emit messages at INFO level to stdout.

The yamcsd program accepts some options to modify these defaults. In particular:

--log
The numeric verbosity level, where 0 = OFF, 1 = WARNING, 2 = INFO, 3 = FINE and 4 = ALL. Default:
2

--log-config
Detailed logger verbosity levels. If unspecified, the --log option impacts all loggers, which may lead to
excessive output.

--no-color
Turn off ANSI color codes

If the configuration directory of Yamcs includes a file etc/logging.properties, then logging properties are
read from this file instead of applying the default console logging. Logging-related program arguments (e.g.
verbosity) are then ignored.

The etc/logging.properties uses the standard Java logging format, which allows to tweak the logging in
much more detail than what is possible through the command-line flags of the yamcsd executable.

A full description of the syntax is beyond the scope of this manual, but see this example of how we currently
configure our generic RPM packages:

logging.properties

handlers = java.util.logging.ConsoleHandler, java.util.logging.FileHandler

java.util.logging.ConsoleHandler.level = INFO
java.util.logging.ConsoleHandler.formatter = org.yamcs.logging.JournalFormatter
java.util.logging.ConsoleHandler.filter = org.yamcs.logging.GlobalFilter

java.util.logging.FileHandler.level = ALL
java.util.logging.FileHandler.pattern = /opt/yamcs/log/yamcs-server.log
java.util.logging.FileHandler.limit = 20000000
java.util.logging.FileHandler.count = 50
java.util.logging.FileHandler.formatter = org.yamcs.logging.CompactFormatter

org.yamcs.level = FINE

There are two handlers:

1. A ConsoleHandler prints its messages to stdout. The console output can for example be consumed
by an init system like systemd. This configuration uses a JournalFormatter that prints short messages
without timestamp for direct injection into the systemd journal, it also applies a GlobalFilter that will
remove log messages specific to an instance. This makes Yamcs less chatty.

2. A FileHandler defines the properties used for logging to /opt/yamcs/log/yamcs-server.log.x. The
FileHandler in this configuration applies a rotation 20 MB with a maximum of 50 files. The theoretic

12

maximum of disk space is therefore 1 GB. The most recent log file can be found at /opt/yamcs/log/
yamcs-server.log.0. Note that when Yamcs Server is restarted the log files will always rotate even if
yamcs-server.log.0 had not yet reached 20 MB.

This configuration logs messages coming from org.yamcs loggers at maximum FINE level. Each handler
may apply a further level restriction. This is applied after the former level restriction. For example the above
FileHandler has level ALL, however it will never print messages more verbose than FINE.

For specific use cases, Yamcs includes a few custom loggers:

org.yamcs.logging.SyslogHandler

Writes to syslogd over UDP with messages formatted according to RFC 3164 (BSD syslog).

The formatting of this handler cannot be modified, and does not include full stacktrace information.

org.yamcs.logging.SyslogHandler.level
Minimum level of loggable messages. Default: ALL.

org.yamcs.logging.SyslogHandler.host
Syslog host. Defaults to loopback.

org.yamcs.logging.SyslogHandler.port
Syslog port. Default: 514.

org.yamcs.logging.SyslogHandler.facility
Syslog facility. Default: 1 (= user-level messages)

org.yamcs.logging.WatchedFileHandler

Handler that watches the file that it is logging to. When that file is deleted, the handler will close and reopen
a new file with the same name. This handler is designed to be used with programs like logrotate that take
care of log rotation outside of the JVM. Without the watch functionality, log messages would just continue to
be written to the old (rotated) file.

org.yamcs.logging.WatchedFileHandler.level
Minimum level of loggable messages. Default: ALL.

org.yamcs.logging.WatchedFileHandler.filename
Name of the file that is logged to. Default: yamcs.log

org.yamcs.logging.WatchedFileHandler.filter
Instance of java.util.logging.Filter. Default: unfiltered

org.yamcs.logging.WatchedFileHandler.formatter
Instance of java.util.logging.Formatter. Default: java.util.logging.XMLFormatter

13

14

3. Mission Database

The Mission Database describes the telemetry and commands that are processed by Yamcs. It tells Yamcs
how to decode packets or how to encode telecommands.

The database organizes TM/TC definitions by space system. A space system may contain other sub-space
systems, thereby structuring the definitions in logical groups. Space systems have a name and can be
uniquely identified via UNIX-like paths starting from the root of the space system hierarchy. For example:
/BogusSAT/SC001/BusElectronics could be the name of a sub-space system under /BogusSAT/SC001.
The root space system is /.

The terminology used in the Yamcs Mission Database is very close to the terminology used in the XTCE
exchange format. XTCE prescribes a useful set of building blocks: space systems, containers, parameters,
commands, algorithms, etc.

Generally, the Mission Database is read-only. Until version 5.8.8, Yamcs allowed overriding some aspects
of the Mission database: calibrators and alarms for parameters and algorithms. Those changes were not
permanent and applicable to a single processor only.

Starting with Yamcs 5.8.8, Yamcs allows designating some sub-trees of the Mission Database as read/write
and allows adding objects under those sub-systems. It is possible to add/change Subsystems, Parameters
and Parameter Types. In future versions this may be extended to other objects (containers, commands...).
Yamcs will also persist the corresponding MDB tree on disk (in XTCE format) so that the information is not
lost when Yamcs restarts.

3.1 Data Types

The MDB data types are associated to parameters and command arguments and provide several character-
istics of these:

• the value type (int64, int32, float,...) of the engineering value

• the value type of the raw value

• validity conditions

• units

• alarms (only for types corresponding to parameters)

• engineering/raw transformation using calibrators

• raw/binary transformation using data encodings

The distinction between a parameter and its type is not so evident and many control systems do not make
this distinction (i.e. each parameter with its own type).

In practice most use of shared types has been to define generic types such as uint8, uint16, and use those
for parameters that do not require any calibration, units or other specific properties.

Types can also be shared for parameters associated to the same type of sensors which do not need individual
calibrators.

Yamcs supports the following parameter and argument data types:

15

• Integer data type

• Float data type

• Boolean data type

• String data type

• Binary data type

• Absolute time data type

• Enumerated data type - a (integer, string) pair.

• Aggregate data type - complex data type similar to a C-struct. Each member of the aggregate has a
name and a type.

• Array data type - multidimensional array where each element is of the same type.

As mentioned above, one important function of a data type is to describe how to represent the raw value on
the wire (i.e. in the command or telemetry packet). The following encodings are supported:

• Integer data encoding

• Float data encoding

• Boolean data encoding

• String data encoding

• Binary data encoding

Note that xyz in the xyz data encoding refers to the type of the raw value whereas the xyz in xyz data
type refers to type of the engineering value.

One will certainly notice that there is no direct encoding for absolute times, enumerated, aggregated and array
value types. Currently these can only be encoded/decoded by other means (e.g. an aggregate value will be
decoded by decoding its members, an enumerated value by decoding its integer or string representation).

The integer and float encodings have optionally a calibrator which allow transforming the raw value to engi-
neering value or reverse.

There may be MDB data types without encoding - these are used by local parameters which are never
encoded on wire.

All the data encodings in Yamcs can be performed by user defined java code by implementing the
org.yamcs.mdb.DataEncoder14 or org.yamcs.mdb.DataDecoder15 respectively. Such code has to be written
if the encoding format is not part of Yamcs.

3.1.1 Parameter types vs Argument types

The data types described in this section are used both for parameters and command arguments. Internally
in Yamcs the types are not shared.

For convenience, when defining the Mission Database in spreadsheet format, there is one place where all the
data types are defined. However when Yamcs loads the spreadsheet, it duplicates in memory the definition
for the parameters and arguments.

In XTCE they are defined in different sections: <ParameterTypeSet> and <ArgumentTypeSet>.

Note that the calibrator (if defined) applies in a different direction: for parameter types it converts from raw to
engineering value whereas for argument types it converts from engineering value to raw. Thus one cannot
apply the same calibrator even if a parameter corresponds conceptually to an argument. The user would
have to invert (in mathematical terms) the calibrator used in the parameter type definition when defining the
corresponding argument data type.

14 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/mdb/DataEncoder.html
15 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/mdb/DataDecoder.html

16

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/mdb/DataEncoder.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/mdb/DataDecoder.html

3.1.2 Integer data type

Integer values in Yamcs can be 32 or 64 bits signed or unsigned.

Integer values can be encoded/decoded on any number of bits smaller than 64. Signed and unsigned values
are supported. Signed values can be encoded in twos complement, sign magnitude or ones complement.

A simple XTCE example of an unsigned integer parameter type with an integer encoding:

<IntegerParameterType signed="false" name="uint16">
<IntegerDataEncoding encoding="unsigned" sizeInBits="16" />
<ValidRange minInclusive="100" maxInclusive="1000"/>

</IntegerParameterType>

Note that by default the type has a sizeInBits=32 so the value will be converted from 16 bits on the wire to
32 bits value. Yamcs will use a 32 bit integer for any parameter with sizeInBits <= 32 and a 64 bit integer
for any type with the 32 < sizeInBits <= 64.

The <ValidRange> construct is optional and used differently for parameters and arguments:

• for parameters it is used to check the validity. If a parameter value does not satisfy the range, it will be
marked as invalid (and can be seen with a specific color in the display)

• for arguments it is used to verify the value provided by the user. If the value does not match the range,
the command is rejected.

Integer parameters can also have associated alarms and calibrators (see below an example for float param-
eters, it is identical for integer parameters).

One important thing to mention about calibrators is that even when associated to the integers, they still
work on (signed) double floating point numbers. Some precision will be lost when converting from a large
(unsigned) integer to a double or vice versa.

The integer parameters can also be encoded as strings, as in the following XTCE example:

<IntegerParameterType signed="false" name="int_encoded_as_string">
<StringDataEncoding>

<SizeInBits>
<Fixed>

<FixedValue>48</FixedValue>
</Fixed>
<TerminationChar>00</TerminationChar>

</SizeInBits>
</StringDataEncoding>

</IntegerParameterType>

In this case the raw value will be of type string and the engineering value of type integer. For an explanation
of how the string encoding works, please see below in the String data type section.

3.1.3 Float data type

Floating point data in Yamcs can be simple precision (32 bit) or double precision (64 bit).

It can be encoded/decoded either to a IEEE754 representation or to an integer representation using a cali-
bration function. Typically a sensor will produce a digital value (e.g. 12 bits integer) which has to be converted
to an analog value using a calibration (or transfer) function.

An XTCE example of a float parameter encoded as integer and having a polynomial calibrator:

<FloatParameterType initialValue="20" name="Temperature_Type">
<UnitSet>

<Unit>degC</Unit>
</UnitSet>
<IntegerDataEncoding encoding="unsigned" sizeInBits="12">

<DefaultCalibrator>
<PolynomialCalibrator>

(continues on next page)

17

(continued from previous page)

<Term coefficient="0" exponent="-20" />
<Term coefficient="1" exponent=".025" />

</PolynomialCalibrator>
</DefaultCalibrator>

</IntegerDataEncoding>
<DefaultAlarm>

<StaticAlarmRanges>
<WarningRange minInclusive="10" maxInclusive="30" />
<CriticalRange minInclusive="-10" maxInclusive="50" />
</StaticAlarmRanges>

</DefaultAlarm>
</FloatParameterType>

Yamcs supports the following type of calibrations:

• polynomial - the conversion between the raw value and the engineering value is obtained by applying
a polynomial function.

• linear spline (point pairs) - the conversion between the raw and engineering value is obtained by inter-
polating linearly the raw value.

• mathematical operations specified in reverse polish notation (only in XTCE format) - the conversion is
obtained by applying the mathematical operation.

• Java expressions (only in spreadsheet format) - the conversion is obtained by running it through the
java expression.

The java expression is the most flexible calibration as it can practically call any java code available on the
server. However it is not allowed by XTCE (instead an algorithm can be used to generate the output value
into a different parameter).

The example above also defines an default alarm - perhaps a bit counter intuitive the parameter will trigger
the alarm if it is outside of the range defined there (for example a value of 40 will trigger the warning alarm
and a value of -15 will trigger the critical alarm). As per XTCE there are 5 levels of alarms supported (in order
of severity): watch, warning, distress, critical and severe.

Both calibrators and alarms can be contextualized: that means a different alarm or calibrator will be used
depending on the value of other parameters.

While the most common encoding for float is float encoding, the other encodings can also be used:

• integer: will convert number to integer by performing a java cast to long and then fitting the long into
the number of bits required. This may result in loss of precision and even in completely wrong number
when converting a signed float to a unsigned integer.

• string: the value will be converted to a string representation.

• binary:

3.1.4 Boolean data type

Boolean values in Yamcs take take a simple true or false value. In XTCE one can define different values
instead of true/false as in the example below. Yamcs only supports these values when reading the XTCE
file (they can be used in conditions for example) but the value computed does not include the string (and thus
cannot be shown in the display).

To encode boolean values one can use any data encoding with the following transformations:

• for integer/float raw values:

– decoding: 0 is false and anything else is true when decoding.

– encoding: true is converted to 1, false is converted to 0.

• for string values:

18

– decoding: if the string value is empty, case insensitive equal with the zeroStringValue defined
in the type or with the string 0 then the value is false, anything else is true.

– encoding: true is converted to the oneStringValue defined in the type, false is converted to
zeroStringValue defined in the type.

• for binary values:

– decoding: if the binary value is empty or consists only of nulls then the value of the boolean is
false anything else is true.

– encoding: the value is converted to a binary array of one element with the value 1 if true or 0 if
false.

<BooleanParameterType name="bool2" oneStringValue="yes!" zeroStringValue="nooo">
<StringDataEncoding>

<SizeInBits>
<Fixed>

<FixedValue>32</FixedValue>
</Fixed>
<TerminationChar>00</TerminationChar>

</SizeInBits>
</StringDataEncoding>

</BooleanParameterType>

The spreadsheet format allows to define a data type with a boolean data encoding by using a raw type of
bool in the Data Type definition. This encoding is not possible to be defined in XTCE (but it is equivalent with
a 1 bit integer encoding) and it always uses one bit representation with 0 = false and 1 = true.

3.1.5 String data type

In Yamcs the string data is represented as a java (unicode) String value. The encoding to/from the wire is
performed using a string data encoding with one of the supported Java Charsets16 (UTF-8, ISO-8859-1, etc)

In addition to converting the bytes to unicode characters, a typical problem in decoding telemetry is knowing
the boundary of the string inside the packet. To comply with XTCE, Yamcs implements a "string in a buffer"
approach:

• conceptually the packet contains a buffer (or a box) where the string has to be extracted from or en-
coded into.

• the buffer can be the same size with the string or larger than the string. If the buffer is larger than
the string, it will be filled by Yamcs with 0 for commands or some filler which is ignored by Yamcs for
telemetry.

• if the buffer is larger than the string, the buffer size can be fixed or its size can be determined from the
value of a parameter/argument.

• inside the buffer:

– the string can fill completely the buffer (so the size of the string is determined by the size of the
buffer).

– the size of the string can be encoded at the beginning of the buffer (in front of the string)

– or the string can be terminated by a special character (or by the end of the buffer, whichever
comes first).

One case which is not supported by Yamcs (nor by XTCE) is a fixed size string inside a fixed size buffer with
the string not filling completely the buffer. For this case you can limit the size of the buffer to the size of the
string and define another parameter for the remaining of the buffer, or simply define an offset for the next
container entry.

The size of the buffer is in number of bytes - depending on the encoding used, a character of the string may
be encoded on multiple bytes (for example UTF-8 encodes each character in one to four bytes).

16 https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html

19

https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html

Finally, please note that although XTCE defines a number of bits for the buffer size or for the size tag, Yamcs
only supports encoding these on an integer number of bytes (e.g. encoding strings on partial bytes is not
supported) so the number of bits has to be divisible by 8.

Example 1: string encoded in a fixed size buffer with a null terminator

The buffer is 6 bytes long (meaning that the next parameter will come after the 6 bytes even if the string is
shorter). If the terminator is not found, it is not considered an error and the string will be 6 bytes long. If the
terminator is not specified (by removing the <TerminationChar> section), the string will always be 6 bytes
long. Note that it may cause the string to include nulls but that is not a problem in Java.

<StringParameterType name="string1">
<StringDataEncoding encoding="UTF-8">

<SizeInBits>
<Fixed>

<FixedValue>48</FixedValue>
</Fixed>
<TerminationChar>00</TerminationChar>

</SizeInBits>
</StringDataEncoding>

</StringParameterType>

This example can be defined in the spreadsheet with the encoding terminated(0x00, UTF-8, 48). If
there is no terminator (so the string covers all the time the buffer), the equivalent spreadsheet encoding is
fixed(48, UTF-8).

Example 2: prefixed size string encoded in undefined buffer

The buffer is not explicitly defined so it is effectively as long as the prefix + string. The maxSizeInBits refers
to the size of the buffer, so in this example the maximum size of the string will be 4.

Note the _yamcs_ignore parameter reference which is used to workaround XTCE mandating a dynamic
value. Yamcs will accept the XML file without the DynamicValue section but the file will not validate with
XTCE 1.2 xsd. An alternative for the _yamcs_ignore would be to derive the buffer length from the packet
length.

<StringParameterType name="string5">
<StringDataEncoding encoding="UTF-8">

<Variable maxSizeInBits="48">
<DynamicValue>

<ParameterInstanceRef parameterRef="_yamcs_ignore" />
</DynamicValue>
<LeadingSize sizeInBitsOfSizeTag="16" />

</Variable>
</StringDataEncoding>

</StringParameterType>

This example can be best defined in the spreadsheet with the encoding PrependedSize(16). The maximum
size cannot be defined, so the effective maximum size will be the remaining of the packet.

Example 3: null terminated string encoded in undefined buffer

This examples provides string argument type whose size is variable. The buffer is not defined which means
the buffer will be effectively the string + terminator.

The maxSizeInBits refers to the maximum size of the buffer; it means that the maximum size of the string in
binary is maxSizeInBits/8 - 1.

Note the `yamcs_ignore` parameter reference which is used to workaround XTCE mandating a dynamic
value. Yamcs will accept the XML file without the DynamicValue section but the file will not validate with
XTCE 1.2 xsd. An alternative for the _yamcs_ignore would be to define an argument for the buffer length
but that would be inconvenient for the user.

20

<StringArgumentType name="string3">
<StringDataEncoding encoding="UTF-8">

<Variable maxSizeInBits="48">
<DynamicValue>

<ParameterInstanceRef parameterRef="_yamcs_ignore" />
</DynamicValue>
<TerminationChar>00</TerminationChar>

</Variable>
</StringDataEncoding>

</StringArgumentType>

More XTCE examples:

• GitHub: yamcs-core/src/test/resources/xtce/strings-tm.xml17

• GitHub: yamcs-core/src/test/resources/xtce/strings-cmd.xml18

More Spreadsheet examples:

• GitHub: yamcs-core/mdb/refmdb.xls19

Finally, we mention that string values can also be encoded with a binary encoder; the translation from string
to binary is using the String#getBytes20 method.

3.1.6 Binary data type

A binary data type represents a sequence of bytes (a byte[] in java). The values of this type implicitly have a
length.

As for strings, Yamcs only supports types which are an integer number of bytes.

Unlike strings, when encoding binary values there is no distinction between the value being encoded and the
buffer in which the value is encoded: the value always fills the buffer.

Example 1: binary parameter type of fixed size

<BinaryParameterType name="binary_type1">
<BinaryDataEncoding>

<SizeInBits>
<FixedValue>128</FixedValue>

</SizeInBits>
</BinaryDataEncoding>

</BinaryParameterType>

A parameter of this type will always be 16 bytes in length.

Example 2: binary parameter type of variable size with the size given by another parameter

The example below defines a parameter type whose size is given by another parameter named size. That
parameter has to be of integer type and precede the binary one in the packet.

<BinaryParameterType name="BinaryType">
<BinaryDataEncoding>

<SizeInBits>
<DynamicValue>

<ParameterInstanceRef parameterRef="size" />
<LinearAdjustment slope="8" />

</DynamicValue>

(continues on next page)

17 https://github.com/yamcs/yamcs/blob/master/yamcs-core/src/test/resources/xtce/strings-tm.xml
18 https://github.com/yamcs/yamcs/blob/master/yamcs-core/src/test/resources/xtce/strings-cmd.xml
19 https://github.com/yamcs/yamcs/blob/master/yamcs-core/mdb/refmdb.xls
20 https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#getBytes

21

https://github.com/yamcs/yamcs/blob/master/yamcs-core/src/test/resources/xtce/strings-tm.xml
https://github.com/yamcs/yamcs/blob/master/yamcs-core/src/test/resources/xtce/strings-cmd.xml
https://github.com/yamcs/yamcs/blob/master/yamcs-core/mdb/refmdb.xls
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#getBytes

(continued from previous page)

</SizeInBits>
</BinaryDataEncoding>

Note the <LinearAdjustment> construct which allows to convert from number of bytes to number of bits
required by the <SizeInBits> element.

Example 3: binary argument type of variable size with the size encoded in front of the data

The example above needs another parameter for the data size. When used in command it has the disad-
vantage that the user needs to enter the number of bytes in addition to the bytes themselves (with the risk of
introducing inconsistencies). Yamcs allows to use an algorithm which will perform the encoding without the
addition of the extra argument:

<BinaryArgumentType name="barray">
<AncillaryDataSet>

<AncillaryData name="Yamcs">minLength=2</AncillaryData>
<AncillaryData name="Yamcs">maxLength=10</AncillaryData>

</AncillaryDataSet>
<BinaryDataEncoding>

<SizeInBits>
<DynamicValue>
<ParameterInstanceRef parameterRef="_yamcs_ignore" />

</DynamicValue>
</SizeInBits>
<ToBinaryTransformAlgorithm name="LeadingSizeBinaryEncoder">

<!-- the 16 passed to the constructor means the size is encoded on 16 bits -->
<AlgorithmText language="java">

org.yamcs.algo.LeadingSizeBinaryEncoder(16)
</AlgorithmText>

</ToBinaryTransformAlgorithm>
</BinaryDataEncoding>

</BinaryArgumentType>

Note again the <DynamicValue> construct with a reference to _yamcs_ignore which will make yamcs ignore
this section. The <SizeInBits> section can be removed from the file if XSD compliance is not important,
Yamcs will not complain.

Note also the minLength and maxLength which are used to configure the minimum/maximum length of the
accepted data (not including the 16 bits size tag!).

3.1.7 Absolute time data type

Instead of encoding and decoding time using raw integer or binary parameters, Yamcs supports the Absolute-
TimeParameterType to describe time. This parameter can be encoded using on of BinaryDataEncoding,
FloatDataEncoding, IntegerDataEncoding and StringDataEncoding elements.

The following example displays the use of a IntegerDataEncoding element where scale and offset at-
tributes are used to apply a linear transformation to the incoming value in order to parse the proper time
value.

Example 1: integer encoding for a AbsoluteTimeParameterType parameter

The example below is using UNIX as its reference time, whose count starts at January 1 1970 and is used
by modern computers, linux systems etc. The offset and the scale are part of a linear transformation which
has the form y = ax + b where b represents the offset, a represents the scale and x is the input.

This transformation could be used for a system whose internal clock counts in seconds from 1/1/2000, so we
need to add 946677600 seconds to that time in order to get the appropriate UNIX timestamp.

• <ReferenceTime> describes origin(epoch or reference) of this time type

22

• <Epoch> may be specified as an XS date where time is implied to be 00:00:00, xs dateTime, or string
enumeration of common epochs. The enumerations are TAI(used by CCSDS and others), J2000,
UNIX(also known as POSIX) and GPS

<AbsoluteTimeParameterType name="absolute_time_param_type_example">
<Encoding offset="946677600" scale="1">

<IntegerDataEncoding sizeInBits="32" />
</Encoding>
<ReferenceTime>

<Epoch>UNIX</Epoch>
</ReferenceTime>

</AbsoluteTimeParameterType>

3.1.8 Enumerated data type

The EnumeratedParameterType supports the description of enumerations, which are a list of values and their
associated labels. Below is an example that demonstrates how an enumerated parameter type is declared
and its mostly used attributes:

Example 1: simple enumerated parameter declaration

<EnumeratedParameterType name="enumerated_parameter_type_example">
<IntegerDataEncoding sizeInBits="16"/>

<EnumerationList>
<Enumeration value="0" label="label_1" />
<Enumeration value="2" label="label_2" />
<Enumeration value="4" label="label_3" />
<Enumeration value="6" label="label_4" />

</EnumerationList>
</EnumeratedParameterType>

3.1.9 Aggregate data type

The AggregateParameterType is used to describe aggregates. It is similar to C-structs or records in other
languages. The ArrayParameterType is defined as shown in the example below:

Example 1: simple aggregate parameter declaration

<Member> is used to define members of the aggregate. Each member has a name, a typeRef for its type and
an optional initialValue for a possible predefined value.

<AggregateParameterType name="aggregate_parameter_type_example" shortDescription="Aggregate Parameter␣
→˓Type Example">
<MemberList>

<Member name="member_1" typeRef="bool_t"/>
<Member name="member_1" typeRef="uint16_t" initialValue="5"/>
<Member name="member_1" typeRef="float_t"/>

</MemberList>
</AggregateParameterType>

3.1.10 Array data type

The ArrayParameterType is used to describe arrays of other ParameterTypes. It is used in containers that are
formed dynamically. This happens when the number of the container's parameters depends on a specific pa-
rameter's value. In that part of the container that will be dynamically repeated an ArrayParameterRefEntry
is injected. The ArrayParameterType is defined as shown in the example below:

23

• arrayTypeRef is a reference to another ParameterType from which the array cells are formed. Any
parameter type can be used.

• DimensionList describes the dimensions of the array. Can be static or dynamic (value from another
parameter).

Example 1: simple array parameter declaration with predefined size = 6

<ArrayParameterType name="array_parameter_type_example" arrayTypeRef="other_parameter_type">
<DimensionList>

<Dimension>
<StartingIndex>

<FixedValue>0</FixedValue>
</StartingIndex>
<EndingIndex>

<FixedValue>5</FixedValue>
</EndingIndex>

</Dimension>
</DimensionList>

</ArrayParameterType>

Example 2: simple array parameter declaration with dynamic size

In this example, the size of the array is equal to the integer parameter number_of_parameters. The
<LinearAdjustment> element is used because the final array size will be equal to <EndingIndex> -
<StartingIndex> + 1

<ArrayParameterType name="array_parameter_type_example" arrayTypeRef="other_parameter_type">
<DimensionList>

<Dimension>
<StartingIndex>

<FixedValue>0</FixedValue>
</StartingIndex>
<EndingIndex>

<DynamicValue>
<ParameterInstanceRef parameterRef="number_of_parameters" />
<LinearAdjustment intercept="-1" />

</DynamicValue>
</EndingIndex>

</Dimension>
</DimensionList>

</ArrayParameterType>

3.2 Parameter Definitions

3.3 Container Definitions

Containers are the equivalent of packets in the usual terminology.

A container employs two mechanism to overcome limitations of the traditional "packet with parameters" ap-
proach. These mechanisms are aggregation and inheritance.

3.3.1 Container Aggregation

A container contains sequence entries which can be of two types:

1. Parameter entries pointing to normal parameters.

2. Container entries pointing to other containers which are then included in the big container.

24

Special attention must be given to the specification of positions of entries in the container. For performance
reasons, it is preferable that all positions are absolute (i.e. relative to the beginning of the container) rather
than relative to the previous entry. The Excel spreadsheet loader tries to transform the relative positions
specified in the spreadsheet into absolute positions.

However, due to entries which can be of variable size, the situation cannot always be avoided. When an entry
whose position is relative to the previous entry is subscribed, Yamcs adds to the subscription all the previous
entries until it finds one whose position is absolute.

If an entry's position depends on another entry (it can be the same in case the entry repeats itself) which is
a Container Entry (i.e. makes reference to a container), and the referenced container doesn't have the size
in bits specified, then all the entries of the referenced container plus all the inheriting containers and their
entries recursively are added to the subscription. Thus, the processing of this entry will imply the extraction
of all parameters from the referenced container and from the inheriting containers. The maximum position
reached when extracting entries from the referenced and inheriting containers is considered the end of this
entry and used as the beginning of the following one.

3.3.2 Container Inheritance

Containers can point to another container through the baseContainer property, meaning that the baseC-
ontainer is extended with additional sequence entries. The inheritance is based on a condition put on
the parameters from the baseContainer (e.g. a EDR_HK packet is a CCSDS packet with apid=943 and
packetid=0x1300abcd).

3.3.3 Little Endian Parameter Encoding

Yamcs supports only little or big endian (XTCE allows in addition arbitrary byte orders, this is not supported).

For little endian parameters which occupy a non-integer number of bytes, the following algorithm is applied
to extract the parameter from the packet:

1. Based on the location of the first bit and on the size in bits of the parameter, find the sequence of bytes
that contains the parameter. Only parameters that occupy at most 4 bytes are supported.

2. Read the bytes in reverse order in a 4 bytes int variable.

3. Apply the mask and the shift required to bring the parameter to the rightmost bit.

For example, assume this C struct on an x86 CPU:

struct {
unsigned int parameter1:4;
unsigned int parameter2:16;
unsigned int parameter3:12;

} x;
x.a=0x1;
x.b=0x2345;
x.c=0x678;

When converted to network order, this would give the sequence of hex bytes 51 34 82 67. Thus, the definition
of this packet should look like:

Parameter Location Size

parameter1 4 4

parameter2 4 16

parameter3 16 12

25

3.4 Alarm Definitions

Yamcs supports the XTCE notion of alarms. Based on the value of a parameter, Yamcs assigns a monitoring
result to each parameter.

An alarm check is performed when any of these applies (in order):

• The condition for a context alarm is satisfied (if multiple, the alarm specification for first matching context
is applied).

• There is an alarm specification without a context (default alarm).

The monitoring result can be:

• null (no alarm specification applies)

• IN_LIMITS (an alarm was checked, but the value is within limits)

• WATCH

• WARNING

• DISTRESS

• CRITICAL

• SEVERE

3.5 Algorithm Definitions

Algorithms are user scripts that can perform arbitrary logic on a set of incoming parameters. The result
is typically one or more derived parameters, called output parameters, that are delivered together with the
original set of parameters (at least, if they have been subscribed to).

Output parameters are very much identical to regular parameters. They can be calibrated (in which case the
algorithm's direct outcome is considered the raw value), and they can also be subject to alarm generation.

Algorithms can be written in JavaScript, Python or Java. By default Yamcs supports JavaScript algorithms
executed using the Nashorn JavaScript engine. Support for other languages (e.g. Python) requires installing
additional dependencies.

Yamcs will bind these input parameters in the script's execution context, so that they can be accessed from
within there. In particular the following attributes and methods are made available:

value
the engineering value

rawValue
the raw value (if the parameter has a raw value)

monitoringResult
the result of the monitoring: null, DISABLED, WATCH, WARNING, DISTRESS, CRITICAL or SEVERE.

rangeCondition
If set, one of LOW or HIGH.

generationTimeMillis
The parameter generation time - milliseconds since Yamcs epoch.

aquisitionTimeMillis
The parameter acquisition time - milliseconds since Yamcs epoch.

generationTime()
The parameter generation time converted to Java Instant (by removing the leap seconds).

aquisitionTime()
The parameter acquisition time converted to Java Instant (by removing the leap seconds).

26

If there was no update for a certain parameter, yet the algorithm is still being executed, the previous value of
that parameter will be retained.

3.5.1 Triggers

Algorithms can trigger on two conditions:

1. Whenever a specified parameter is updated

2. Periodically

Multiple triggers can be combined. In the typical example, an algorithm will trigger on updates for each of
its input parameters. In other cases (for example because the algorithm doesn't have any inputs), it may be
necessary to trigger on some other parameter. Or maybe a piece of logic just needs to be run at regular time
intervals, rather than with each parameter update.

If an algorithm was triggered and not all of its input parameters were set, these parameters will be defined in
the algorithm's scope, but with their value set to null.

3.5.2 User Libraries

The Yamcs algorithm engine can be configured to import a number of user libraries. Just like with algorithms,
these libraries can contain any sort of logic and are written in the same scripting language. Yamcs will load
user libraries one time only at start-up in their defined order. This will happen before running any algorithm.
Anything that was defined in the user library, will be accessible by any algorithm. In other words, user libraries
define a kind-of global scope. Common use cases for libraries are: sharing functions between algorithms,
shortening user algorithms, easier outside testing of algorithm logic, ...

Allowing to split the code in different user libraries is merely a user convenience. From the server perspective
they could all be merged together in one big file.

3.5.3 Algorithm Scope

User algorithms have each their own scope. This scope is safe with respect to other algorithms (i.e. variables
defined in algorithm a will not leak to algorithm b.

An algorithm's scope, however, is shared across multiple algorithm runs. This allows you to keep variables
inside internal memory if needed. Do take caution with initializing your variables correctly at the beginning of
your algorithm if you only update them under a certain set of conditions (unless of course you intend them to
keep their value across runs).

3.5.4 Sharing State

If some kind of a shared state is required between multiple algorithms, the user libraries' shared scope could
be used for this. In many cases, the better solution would be to just output a parameter from one algorithm,
and input it into another. Yamcs will automatically detect such dependencies, and will execute algorithms in
the correct order.

3.5.5 Historic Values

With what has been described so far, it would already be possible to store values in an algorithm's scope
and perform windowing operations, such as averages. Yamcs goes a step further by allowing you to input
a particular instance of a parameter. By default instance 0 is inputted, which means the parameter's actual
value. But you could also define instance -1 for inputting the parameter's value as it was on the previous
parameter update. If you define input parameters for, say, each of the instances -4, -3, -2, -1 and 0, your user
algorithm could be just a simple one-liner, since Yamcs is taking care of the administration.

27

Algorithms with windowed parameters will only trigger as soon as each of these parameters have all instances
defined (i.e. when the windows are full).

3.5.6 JavaScript algorithms

The JavaScript algorithms are executed by the Nashorn engine.

The algorithm text is expected to contain the full function body. The body will be encapsulated in a JavaScript
function like:

function algorithm_name(in_1, in_2, ..., out_1, out_2...) {
<algorithm-text>

}

in_x and out_x are names assigned to the inputs/outputs in the algorithm definition.

The method can make use of the input variables and assign out_x.value (this is the engineering value) or
out_x.rawValue (this is the raw value) and out_x.updated for each output variable.

The <out>.updated can be set to false to indicate that the output value has not to be further processed even
if the algorithm has run. By default it is true, meaning that each time the algorithm is run, it is assumed that it
updates all the output variables.

If out_x.rawValue is set and out_x.value is not, then Yamcs will run a calibration to compute the engi-
neering value.

Note that some algorithms (e.g. command verifiers) need to return a value.

3.5.7 Python algorithms

This works very similarly with the JavaScript algorithms. The thing to pay attention is the indentation. The
algorithm text which is specified in the spreadsheet will be automatically indented with 4 characters:

function algorithm_name(in_1, in_2, ..., out_1, out_2...) {
<algorithm-text>

}

3.5.8 Java expression algorithms

This works similarly with the JavaScript and Python algorithms: a java class is generated containing the user
defined algorithm text. It offers better performance than the scripting algorithms because no script engine is
involved.

... imports

... class declaration
private void execute_java_expr(ParameterValue input0, ParameterValue input1..., ParameterValue output0,␣
→˓ParameterValue output1...) {

<algorithm-text>
}

The first variables are the inputs, followed by the outputs. The java class
org.yamcs.parameter.ParameterValue21 has to be used to get the values of the inputs (e.g. getEngValue()
will give the engineering value) and set the value of the outputs. For example the text to add two inputs pv0
and pv1 into AlgoFloatAdditionJe could be:

float f0 = pv0.getEngValue().getFloatValue();
float f1 = pv1.getEngValue().getFloatValue();
AlgoFloatAdditionJe.setFloatValue(f0 + f1);

21 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/parameter/ParameterValue.html

28

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/parameter/ParameterValue.html

The getFloatValue() in the code above is because the engineering type is Float with sizeInBits=32. If the
wrong get is used on a org.yamcs.parameter.Value22, an exception will be thrown by the algorithm (should
be visible in the yamcs-web as well as in the logs).

The algorithm can leave the output values unset; in that case the values will not be used further.

In case the algorithm is used for a command verifier (see below), it has to return a value. A boolean value of
true (in fact java Boolean.TRUE object) means that the verifier has succeeded, null means that the verifier
is still pending. Any other value means that the verifier has failed; the object will be converted to string and
used as an explanation for the failure.

3.5.9 Java algorithms

The algorithm text is a class name with optionally parentheses enclosed string that is parsed into an object
by a yaml parser. Unlike the java-expression algorithms, the Java algorithms require the user to pre-compile
the classes into a jar and place it on the server in the lib/ext directory.

Yamcs will locate the given class which must be implementing the org.yamcs.algorithms.AlgorithmExecutor23

interface and will create an object with a constructor with three parameters:

MyAlgorithmExecutor(Algorithm algorithmDef, AlgorithmExecutionContext context, Object arg)

• algorithmDef represents the algorithm definition; it can be used for example to retrieve the MDB
algorithm name, input parameters, etc.

• context is an object holding some contextual information related to where the algorithm is running.
Generally this refers to a processor but for command verifiers there is a restricted context to distinguish
the same algorithm running as verifier for different commands.

• arg is an optional argument parsed using the snakeyaml parser (can be a Integer, Long, Double, Map
or List).

If the optional argument is not present in the algorithm text definition, then the class constructor should only
have two parameters.

The class has two main methods updateParameters which is called each time one of input parameters
changes and runAlgorithm which runs the algorithm and returns the output values. The algorithm is free
to chose which output values are returned at each run (it could also return an empty list when no value has
been generated).

The abstract class org.yamcs.algorithms.AbstractAlgorithmExecutor24 offers some helper methods and can
be used as base class for implementation of such algorithm.

If the algorithm is used for data decoding, it has to implement the org.yamcs.mdb.DataDecoder25 interface
instead (see below).

3.5.10 Command verifier algorithms

Command verifier algorithms are special algorithms associated to the command verifiers. Multiple instances
of the same algorithm may execute in parallel if there are multiple pending commands executed in parallel.

These algorithms are special as they can use as input variables not only parameters but also command argu-
ments and command history events. These are specified by using "/yamcs/cmd/arg/" and "/yamcs/cmdHist"
prefix respectively.

In addition these algorithms have to return a boolean value (whereas the normal algorithms only have to write
to output variables). The returned value is used to indicate if the verifier has succeeded or failed. No return
value will mean that the verifier is still pending.

22 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/parameter/Value.html
23 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/algorithms/AlgorithmExecutor.html
24 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/algorithms/AbstractAlgorithmExecutor.html
25 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/mdb/DataDecoder.html

29

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/parameter/Value.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/algorithms/AlgorithmExecutor.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/algorithms/AbstractAlgorithmExecutor.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/mdb/DataDecoder.html

3.5.11 Data Decoding algorithms

The Data Decoding algorithms are used to extract a raw value from a binary buffer. These algorithms do not
produce any output and are triggered whenever the parameter has to be extracted from a container.

These algorithms work differently from the other ones and have are some limitations:

• only Java is supported as a language

• not possible to specify input parameters

These algorithms have to implement the interface org.yamcs.mdb.DataDecoder26.

3.6 Command Definitions

A command is a message sent from Yamcs to a spacecraft or other remote system instructing it to perform a
particular action or set of actions.

A command is defined by a name and a set of named arguments, the arguments are of specified data types.

Similar with the telemetry containers, the commands also support inheritance. A command inheriting another
command, inherits all its parent arguments, can define certain fixed values for those and can add additional
arguments.

Traditionally, the commands sent to spacecrafts are encoded into binary packets to save bandwith. Together
with the command name and its arguments, the MDB defines how to compose the binary packet.

The MDB contains other optional characteristics for commands:

• Command Significance - can be used to indicate the relative importance or urgency of a command.
That allows the user interface applications to alert the user. Yamcs can also use the significance to
allow users with elevated privileges to send them.

• Transmission Constraints - can be used to specify some conditions that have to be valid in order to
send a command.

• Command Verification - can be used to verify the command execution after the command has been
sent.

3.7 Loading TM/TC Definitions

3.7.1 XTCE Loader

This loader reads TM/TC definitions from an XML file compliant with the XTCE exchange format coordinated
by OMG. The Yamcs database is very close to XTCE, which makes this mapping relatively straightforward.
For more information about XTCE, see http://www.xtce.org.

3.7.1.1 Configuration

The loader is configured in etc/mdb.yaml or in the instance configuration by specifying the type as xtce,
and providing the location of the XML file in the file attribute.

- type: "xtce"
args:
file: "BogusSAT.xml"
autoTmPartitions: true
#fileset: ["a*.xml", "b.xml"]

26 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/mdb/DataDecoder.html

30

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/mdb/DataDecoder.html
http://www.xtce.org

Configuration Options

file (string)
The filename to be loaded. Either this or the fileset attribute are required

fileset (string or list of strings)
Can be used to load multiple XML files. A glob pattern can be used to match multiple files and/or the
files can be specified in the list. The ** for matching directories recursively is not supported.

If the fileset option is used, the subLoader cannot be used to load child subsystems. This is because
it is not possible to specify which subsystem will be the parent of the child.

autoTmPartitions (boolean)
If true, Yamcs will automatically mark to be used as archive partitions all containers which do not have
a parent.

If this option is false, the containers can still be manually marked by using the ancillary data property
UseAsArchivingPartition:

<SequenceContainer>
....
<AncillaryDataSet>

<AncillaryData name="Yamcs">UseAsArchivingPartition</AncillaryData>
</AncillaryDataSet>

</SequenceContainer>

Default: true

3.7.1.2 Compatibility

Yamcs does not seek full compliance with XTCE. It only reads the parts that relate to concepts in its internal
Mission Database. This chapter presents an overview of the unsupported features and details where the
implementation differs from the standard.

Note that when reading the XML XTCE file Yamcs is on purpose tolerant, it ignores the tags it does not know
and it also strives to be backward compatible with XTCE 1.0 and 1.1. Thus the fact that an XML file loads in
Yamcs does not mean that is 100% valid. Please use a generic XML validation tool or the xtcetools27 project
to validate your XML file.

The following concepts are not supported :

• Stream - data is assumed to be injected into Yamcs as packets, any stream processing has to be done
as part of the data link definition and is not based on XTCE.

• Message

• ParameterSegmentRefEntry

• ContainerSegmentRefEntry

• DiscreteLookupList

• ErrorDetectCorrectType. Note that error detection/correction is implemented directly into the Yamcs
data links.

• ContextSignificanceList

• ParameterToSetList

• ParameterToSuspendAlarmsOnSet

• RestrictionCriteria/NextContainer

The other elements are supported one way or another, exceptions or changes from the specs are given in
the sections below.

27 https://gitlab.com/dovereem/xtcetools

31

https://gitlab.com/dovereem/xtcetools

Header

• Only the version and date are supported. AuthorSet and NoteSet are ignored.

Data Encodings

• changeThreshold
Not supported.

• FromBinaryTransformAlgorithm
In XTCE the FromBinaryTransformAlgorithm can be specified for the BinaryDataEncoding. It is
not clear how exactly that is supposed to work. In Yamcs the FromBinaryTransformAlgorithm can
be specified on any XyzDataEncoding and is used to convert from binary to the raw value which is
supposed to be of type Xyz.

• ToBinaryTransformAlgorithm
not supported for any data encoding

• FloatDataEncoding
Yamcs supports IEEE754_1985, MILSTD_1750A and STRING encoding. STRING is not part of
XTCE - if used, a StringDataEncoding can be attached to the FloatDataEncoding and the string will be
extracted according to the StringDataEncoding and then parsed into a float or double according to the
sizeInBits of FloatDataEncoding. DEC, IBM and TI encoding are not supported.

• StringDataEncoding
For variable size strings whose size is encoded in front of the string, Yamcs allows to specify only for
command arguments sizeInBitsOfSizeTag = 0. This means that the value of the argument will be
inserted without providing the information about its size. The receiver has to know how to derive the
size. This has been implemented for compatibility with other systems (e.g. SCOS-2k) which allows
this - however it is not allowed by XTCE which enforces sizeInBitsOfSizeTag > 0.

Data Types

• ValidRangeSet
Introduced in XTCE 1.2 for command arguments. Yamcs only supports one range in the set.

• BooleanDataType
In XTCE, each BooleanDataType has a string representation. In Yamcs the value is mapped to a
org.yacms.parameter.BooleanValue or the protobuf equivalent that is a wrapper for a boolean (either
true or false in all sane programming languages). The string value is nevertheless supported in
comparisons and math algorithms but they are converted internally to the boolean value. If you want
to get to the string representation from the client, use an EnumeratedParameterType.

• RelativeTimeDataType
Not supported.

Monitoring

• ParameterSetType
parameterRef is not supported. According to XTCE doc this is "Used to include a Parameter defined
in another sub-system in this sub-system". It is not clear what it means "to include". Parameters from
other space systems can be referenced using a fully qualified name or a relative name.

• ParameterProperties
PhysicalAddressSet, SystemName and TimeAssociation are not supported.

• Containers

32

BinaryEncoding not supported in the container definitions.

• StringParameterType
Alarms are not supported.

Commanding

• Arrays are not supported for commands (they are for telemetry).

• ArgumentRefEntry
IncludeCondition and RepeatEntry are not supported.

• Multiple CompleteVerifiers can be declared but the success of any of them will make the command
complete successfully; XTCE specifies that all of them have to succeed for the command to be
declared successful.
Note that when a command is completed (with success or failure), all the pending verifies are
canceled. This means that if multiple CompleteVerifiers are declared, the first one finishing will decide
the outcome of the command.

Algorithms

• OnContainerUpdateTrigger is not supported.

3.7.2 Spreadsheet Loader

The spreadsheet loader loads TM/TC definitions from an Excel spreadsheet. The spreadsheet structure must
follow a specific structure. The advantage of this loader is that the Excel files are very convenient to modify
with any spreadsheet program. It is recommended to start from an existing example and replace its content
as required.

The Excel file must be in Excel 97-2003 Format (.xls). .xlsx is not supported.

The loader is configured in etc/mdb.yaml or in the instance configuration by specifying the type as sheet,
and providing the location of the XML file.

- type: "sheet"
args:
file: "mdb/BogusSAT.xls"

The following notation is also accepted for historical reasons:

- type: "sheet"
spec: "mdb/BogusSAT.xls"

Configuration Options

file (string)
Required. The filename to be loaded.

enableXtceNameRestrictions (boolean)
If true, names must only use characters, digits, underscores or dashes. Default: true

Sheets

The spreadsheet may contain any sheets, however only the following names are considered, and further
detailed in their respective sections.

33

• General (page 34) (required)
• ChangeLog (page 35)
• DataTypes (page 35)
• Parameters (page 39)
• DerivedParameters (page 40)
• LocalParameters (page 40)
• Containers (page 40)

• Algorithms (page 41)
• Alarms (page 43)
• Commands (page 43)
• CommandOptions (page 44)
• CommandVerification (page 45)
• Calibration (page 47)

Multiple Space Systems

A spreadsheet file describes one space system. Multiple spreadsheets can be combined in a space system
tree as described in Loading TM/TC Definitions (page 30).

Alternatively, Yamcs also allows to describe a tree of space systems in a single spreadsheet file with the
following rules:

• All sheets that do not have a prefix, contain data for the main space system whose name is defined in
the General Sheet (page 34).

• To define data in subsystems, a sheet can be named like SYSTEM1|SYSTEM2|Containers. This defi-
nition will create a SYSTEM1 as part of the main space system and a child SYSTEM2 of SYSTEM1. Then
the containers will be loaded in SYSTEM2.

The spreadsheet loader scans and creates the subsystem hierarchy and then it loads the data inside the
systems traversing the hierarchy in a depth-first order.

Number Base

Numeric values can be entered as decimals or as hexadecimals (with prefix 0x)

Referencing Parameter and Containers

Name references can be used to refer to items in other space systems. They look like UNIX-like directory
access expressions, such as ../a/b.

The result of the lookup depends on the exact tree configuration in etc/mdb.yaml

Comments

Rows that begin with the symbol '#' in their first cell are ignored.

3.7.2.1 General Sheet

This sheet is required and allows global properties to be defined. Apart from the column headers, the sheet
should contain only a single row.

format version (required)
Used by the loader to ensure a compatible spreadsheet structure.

The latest format version is 7.1.

The earliest supported format is 5.3.

name (required)
Name of the space system. All definitions in this system will be added to this system.

34

document version (required)
Available to the spreadsheet author to track versions in an arbitrary manner.

If the ChangeLog (page 35) sheet is used, the document version should match the version of the latest
changelog entry.

3.7.2.2 ChangeLog Sheet

This optional sheet contains the list revisions made to the described space system.

The sheet should have these columns:

version (required)
Version number of this spreadsheet. Defined by the author. Entries in the changelog should have
increasing version numbers.

date (required)
When the change was made. This should be a date field, however any string value is accepted.

message
Free-text description of the change.

author
Author of the change.

Unlike with other sheets, the column names are not currently enforced. Instead the column order must match
this description.

3.7.2.3 DataTypes Sheet

This sheet describes data types that can then be used in the definition of parameters (page 39) and command
arguments (page 43).

type name (required)
Name of the type used as a reference in the parameter and command sheets.

eng type (required)
Engineering type. One of:

• uint: unsigned 32 bit integer

• uint64: unsigned 64 bit integer

• int: signed 32 bit integer

• int64: signed 64 bit integer

• enumerated: enumeration (integer to string)

• float: 32 bit floating point number

• double: 64 bit floating point number

• boolean: true or false

• string: text value

• binary: byte array

• time: absolute time

It is also possible to define an aggregate or array type.

See: Engineering Types (page 38).

35

raw type
See: Encoding and Raw Types (page 36).

A parameter when extracted from a binary packet has two forms: a raw value and an engineering value.
The extraction from the raw packet is performed according to the encoding, whereas the conversion
from raw to engineering value is performed by a calibrator.

Raw types are optional for use with parameters that do not require encoding. For example because
they are already extracted. Then Yamcs can only do their calibration. Or it can be that a parameter is
already calibrated, then it can still be specified here to be able to associate alarms.

encoding
See: Encoding and Raw Types (page 36).

eng unit
Unit of measure. For informational purpose only.

calibration
Reference to a calibrator defined in the Calibration sheet (page 47). Leave empty if no calibration is
applied.

initial value
Initial (default) value given to a parameter or command argument.

Note that this value can be overwritten for specific parameters, or command arguments using a column
of the same name in the Commands (page 43) and Parameters (page 39) sheets.

The value must be understandable for the used engineering type.

For binary, use a hexadecimal notation.

For booleans, use a value of true or false.

For arrays, specify a value in JSON format: [-3, -2.4, 5].

For aggregates, specify a value in JSON format: {member1: 1, member2: 2}.

description
A description for the parameter or command argument. Should be one line.

long description
Long textual description. In Markdown format.

3.7.2.3.1 Encoding and Raw Types The columns raw type and encoding describe how the parameter
is encoded in the binary packet. All types are case-insensitive.

Unsigned Integers Raw type: uint

Encoding:

Encoding Description

unsigned(<n>,<BE|LE>) unsigned integer

<n> shortcut for unsigned(<n>,BE)

Where:

• n is the size in bits

• LE = little endian

• BE = big endian

36

Signed Integers Raw type: int

Encoding:

Encoding Description

twosComplement(<n>,<BE|LE>) two's complement encoding

signMagnitude(<n>,<BE|LE>) sign magnitude encoding - first (or last for LE) bit is the sign,
the remaining bits represent the magnitude (absolute value).

<n> shortcut for twosComplement(<n>,BE)

Where:

• n is the size in bits

• LE = little endian

• BE = big endian

Floats Raw type: float

Encoding:

Encoding Description

ieee754_1985(<n>,<BE|LE>) IEE754_1985 encoding

<n> shortcut for ieee754_1985(<n>,BE)

Where:

• n is the size in bits

• LE = little endian

• BE = big endian

Booleans Raw type: boolean

Encoding: Leave empty. 1 bit is assumed.

String Raw type: string

Encoding:

Encoding Description

fixed(<n>, <charset>) fixed size string. The string has to start at a byte boundary
inside the container.

PrependedSize(<x>, <charset>) string whose length in bytes is specified by the first x bits of
the array

<n> shortcut for fixed(<n>)

terminated(<0xBB>, <charset><m>) terminated string

Where:

37

n is the size in bits. Only multiples of 8 are supported.

x is the size in bits of the size tag. Only multiples of 8 are supported. The size must be expressed in bytes.

charset is one of the charsets supported by java28 (UTF-8, ISO-8859-1, etc). Default: UTF-8.

0xBB specifies a byte that is the string terminator. Pay attention to the parameters following this one; if the
terminator is not found the entire buffer will be consumed.

Binary Raw type: binary

Encoding:

Encoding Description

fixed(<n>) fixed size byte array

PrependedSize(<x>) byte array whose size in bytes is specified in the first x bits of
the array

<n> shortcut for fixed(<n>)

Where:

n is the size in bits. Only multiples of 8 are supported and it has to start at a byte boundary.

x is the size in bits of the size tag. Note that while x can be any number <= 32, the byte array has to start at
a byte boundary.

Custom Raw type: any

Encoding: custom(<n>,algorithm)

The decoding will be performed by a user defined algorithm.

• <n> is optional and may be used to specify the size in bits of the entry in the container (in case the size
is fixed) - it is used for optimizing the access to the parameters following this one.

• algorithm the name of the algorithm - it has to be defined in the Algorithms sheet

3.7.2.3.2 Engineering Types Engineering types describe a parameter in its processed form (i.e. after
any calibrations). All types are case-insensitive.

Depending on the combination of raw and engineering type, automatic conversion is applicable. For more
advanced use cases, define and refer to a calibrator in the Calibration sheet (page 47).

28 https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html

38

https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html

Type Description Automatic Conversion

uint Unsigned 32 bit integer - it corresponds
to int in Java.

From int, uint or string

uint64 Unsigned 64 bit integer - it corresponds
to long in Java.

From int, uint or string

int Signed 32 bit integer - it corresponds to
int in Java.

From int, uint or string

int64 Signed 64 bit integer - it corresponds to
long in Java.

From int, uint or string

string Character string - it corresponds to
String in Java.

From string

float 32 bit floating point number - it corre-
sponds to float in Java.

From float, int, uint or string

double 64 bit floating point number - it corre-
sponds to double in Java.

From float, int, uint or string

enumerated A kind of string that can only be one out
of a fixed set of predefined state values.
It corresponds to String in Java.

From int or uint. A Calibrator is re-
quired.

boolean A binary true/false value - it corresponds
to 'boolean' in Java.

From any raw type. Values equal to zero,
all-zero bytes or an empty string are con-
sidered false.

binary Byte array - it corresponds to byte[] in
Java.

From binary only.

3.7.2.4 Parameters Sheet

This sheet contains parameter information.

Recognised column names are:

parameter name (required)
The name of the parameter within the space system.

data type (required)
Reference to a data type define in the DataTypes sheet (page 35).

description
Textual description of the parameter. Should be one line.

long description
Long textual description of the parameter. In Markdown format.

namespace:<ALIAS>
Any numbers of namespace columns can be added using the prefix namespace: followed by the name
of a namespace.

This allows associating alternative names to parameters.

initial value
Initial (default) value of this parameter. If present, this overrides any initial value set on the referenced
data type.

The value must be understandable for the used engineering type.

For binary, use a hexadecimal notation.

39

For booleans, use a value of true or false.

For arrays, specify a value in JSON format: [-3, -2.4, 5].

For aggregates, specify a value in JSON format: {member1: 1, member2: 2}.

flags
The only recognized flag is p which sets the parameter as persistent - that means its value will be saved
and restored when the Yamcs restarts. For this to work, the realtime processor has to be configured (in
processor.yaml) with persistParameters: true

3.7.2.5 Derived Parameters Sheet

This sheet contains information for parameters that are the results of algorithm computations.

The structure of this sheet is identical to the Parameters sheet (page 39).

3.7.2.6 Local Parameters Sheet

This sheet contains information for parameters that are local to Yamcs and that can be set by users.

The structure of this sheet is identical to the Parameters sheet (page 39).

3.7.2.7 Containers Sheet

The sheet contains description of the content of the container (packet). As per XTCE, a container is a
structure describing a binary chunk of data composed of multiple entries.

A container can inherit from other container meaning that it takes all entries from the parent, and add some
more. A container can have two types of entries:

• parameters

• other containers (this is called aggregation)

General conventions:

• first line with a new container name starts a new container

• second line after a new container name should contain the first entry

• empty lines are only allowed between two containers

These are the column names:

container name
The name of the container within the space system.

parent
Parent container and position in bits where the subcontainer starts, for example
PARENT_CONTAINER:64. If the position in bits is not specified, the default position is to start
from the last parameter in the parent. If parent is not specified, either the container is the root, or it can
be used as part of another container in aggregation.

condition
Inheritance condition. This specifies a switch within the parent which activates this child container, for
example MID=0x101. There are currently three condition forms supported:

• Simple condition: Parameter==value

• Condition list: Parameter==value;Parameter2==value2. All conditions must be true.

• Boolean condition: &(epx1;exp2;...;expn) for an AND expression, or |(exp1;exp2;...;
expn) for an OR expression. Nested expressions are either other boolean conditions or a simple
condition.

40

Currently the only supported conditions are on the parameters of the parent container. This cover the
usual case where the parent defines a header and the inheritance condition is based on parameters
from the header.

flags
Optional flags.

a
Use this container as archive partition. In the Archive Browser this will appear as a line, and it will
be more efficient to filter the retrieval on this container.

entry
A reference to a parameter, or a container without parent.

position
Position of the entry. Could be relative to the previous entry or absolute (relative to the beginning of the
packet).

r:<n>
Position is relative to the previous entry separated by <n> bits.

a:<n>

Position is absolute. <n> is the number of bits from the beginning of the packet.

<n> is equivalent to r:<n>.

If unset, the default is r:0, meaning the entry directly follows the preceding entry.

size in bits
Only for containers (and not for parameter entries). If set, this represents the size of the container.
Otherwise, the size is derived from the entries in the container.

For example if the container contains some fillers at the end, this entry can be used to enforce the size
such that it is not needed to add an artificial parameter. Note that the size matters only if the container
is used as part of another container. Either inherited from or in aggregation.

expected interval
Expected interval in milliseconds. If set then all parameters extracted from this container have an expi-
ration time set to this interval multiplied with a configurable constant. See the option expirationTolerance
(page 94) in etc/processor.yaml.

description
Textual description of the container. Should be one line.

long description
Long textual description of the container. In Markdown format.

namespace:<ALIAS>
Any numbers of namespace columns can be added using the prefix namespace: followed by the name
of a namespace.

This allows associating alternative names to containers.

3.7.2.8 Algorithms Sheet

This sheet contains arbitrarily complex user algorithms that can set (derived) output parameters based on
any number of input parameters.

Empty lines are used to separate algorithms and cannot be used inside the specification of one algorithm.

The column names are:

algorithm name
The name of the algorithm within the space system.

41

language
The programming language of the algorithm. Currently supported values are JavaScript, python and
java.

python requires adding the jython-standalone <https://mvnrepository.com/artifact/org.python/jython-
standalone> jar to the Java classpath (due to its large size, this is by default not included in Yamcs
distributions).

text
The code of the algorithm. See: Algorithm Definitions (page 26).

trigger
Optionally specify when the algorithm should trigger:

• OnParameterUpdate('/some-param', 'some-other-param') Execute the algorithm when-
ever any of the specified parameters are updated

• OnInputParameterUpdate This is the same as above for all input parameters (i.e. execute when-
ever any input parameter is updated).

• OnPeriodicRate(<fireRate>) Execute the algorithm every fireRate milliseconds

• none The algorithm doesn't trigger automatically but can be called upon from other parts of the
system (like the command verifier)

The default is none.

in/out
Whether a parameter is inputted to, or outputted from the algorithm. Parameters are defined, one per
line, following the line defining the algorithm name.

parameter reference
Algorithms can be interdependent, meaning that the output parameters of one algorithm could be used
as input parameters of another algorithm.

instance
Allows inputting a specific instance of a parameter. At this stage, only values smaller than or equal to
zero are allowed. A negative value, means going back in time. Zero is the default and means the actual
value. This functionality allows for time-based window operations over multiple packets. Algorithms with
windowed parameters will only trigger as soon as all of those parameters have all instances defined
(i.e. when the windows are full).

Note that this column should be left empty for output parameters.

variable name
An optional friendlier name for use in the algorithm. By default the parameter name is used, which may
lead to runtime errors depending on the naming conventions of the applicable script language.

Note that a unique name is required in this column, when multiple instances of the same parameter are
inputted.

flags
This column is applicable for each in parameter and can have the following values:

M
Short for mandatory. The algorithm will not trigger unless a value is set for this input parameter.

description
Textual description of the algorithm. Should be one line.

long description
Long textual description of the algorithm. In Markdown format.

namespace:<ALIAS>
Any numbers of namespace columns can be added using the prefix namespace: followed by the name
of a namespace.

This allows associating alternative names to algorithms.

42

3.7.2.9 Alarms Sheet

This sheet defines how the monitoring results of a parameter should be derived. E.g. if a parameter exceeds
some pre-defined value, this parameter's state changes to CRITICAL.

parameter reference
The reference name of the parameter for which this alarm definition applies

context
A condition under which the defined triggers apply. This can be used to define multiple different sets
of triggers for one and the same parameter, that apply depending on some other condition (typically a
state of some kind). When left blank, the defined set of conditions are assumed to be part of the default
context.

Contextual alarms are evaluated from top to bottom, until a match is found. If no context conditions
apply, the default context applies.

report
When alarms under the given context should be reported. Should be one of OnSeverityChange or
OnValueChange. With OnSeverityChange being the default. The condition OnValueChange will check
value changes based on the engineering values. It can also be applied to a parameter without any
defined severity levels, in which case an event will be generated with every change in value.

min violations
Number of successive instances that meet any of the alarm conditions under the given context before
the alarm event triggers (defaults to 1). This field affects when an event is generated (i.e. only after X
violations). It does not affect the monitoring result associated with each parameter. That would still be
out of limits, even after a first violation.

watch: trigger type
One of low (or alias lowInclusive), high (or alias highInclusive), lowExclusive, highExlusive
or state. For each context of a numeric parameter, you can have both a low and a high trigger that
lead to the WATCH state. For each context of an enumerated parameter, you can have multiple state
triggers that lead to the WATCH state.

watch: trigger value
If the trigger type is low, lowInclusive, high or highInclusive: a numeric value indicating the low
resp. high limit value. The value is considered inclusive with respect to its nominal range. For example,
a low limit of 20, will have a WATCH alarm if and only if its value is smaller than 20.

If the trigger type is lowExclusive or highExclusive: a numeric value indicating the low resp. heigh
limit value. The value is considered exclusive with respect to its nominal range. For example, a lowEx-
clusive limit of 20, will have a WATCH alarm if and only if its value is smaller than or equal to 20.

If the trigger value is state: a state that would bring the given parameter in its WATCH state.

warning trigger type, warning trigger value
Analogous to watch trigger

distress trigger type, distress trigger value
Analogous to watch trigger

critical trigger type, critical trigger value
Analogous to watch trigger

severe trigger type, severe trigger value
Analogous to watch trigger

3.7.2.10 Commands Sheet

This sheet contains commands description, including arguments. General conventions:

• First line with a new 'Command name' starts a new command

43

• Second line after a new 'Command name' should contain the first command arguments

• Empty lines are only allowed between two commands.

The column names are:

command name
The name of the command. Any entry starting with # is treated as a comment row.

parent
Name of the parent command and position in bits.

Can be specified starting with / for an absolute reference or with ../ for pointing to parent space
system.

A suffix :x means that the arguments in this container start at position x (in bits) relative to the top-most
container.

Currently there is a problem for containers that have no argument: the bit position does not apply to
children and has to be repeated.

argument assignment
name1=value1;name2=value2 where name1 and name2 are the names of arguments which are as-
signed when the inheritance takes place.

flags
For commands: A is abstract. For arguments: L is little endian.

argument name
From this column on, most of the cells are valid for arguments only. These have to be defined on a new
row after the command. The exceptions are: description, long description and aliases.

position
Relative position to the previous argument. Default: 0

data type
Reference to a data type define in the DataTypes sheet (page 35).

Or a value of the form FixedValue(n) where n is the size in bits. This can be used to fill the packet
with a value without requiring an argument.

default value
Default value. If data type is a FixedValue, this has to contain the value in hexadecimal.

Note that when the size of the argument is not an integer number of bytes (which is how hexadecimal
binary strings are specified), the most significant bits are ignored.

range low
The value of the argument cannot be smaller than this. For strings and binary arguments this means
the minimum length in characters, respectively bytes.

range high
The value of the argument cannot be higher than this. Only applies to numbers. For strings and binary
arguments this means the minimum length in characters, respectively bytes.

description
Optional free text description. Should be one line.

long description
Long textual description. In Markdown format.

3.7.2.11 CommandOptions Sheet

This sheet defines two types of options for commands:

• Transmission constraints: these are conditions that have to be met in order for the command to be sent.

44

• Command significance: this flags commands that are of significance. The significance can be used in
end-user applications to raise the user's awareness before sending a command.

The column names are:

command name (required)
The name of a command. Any entry starting with # is treated as a comment row

transmission constraints
Constraints can be specified on multiple lines. All of them have to be met for the command to be
allowed for transmission.

constraint timeout
This refers to the left column. A command stays in the queue for that many milliseconds. If the constraint
is not met, the command is rejected. 0 means that the command is rejected even before being added
to the queue, if the constraint is not met.

command significance
Significance level for commands. Depending on the configuration, an extra confirmation or certain
privileges may be required to send commands of high significance. One of:

• none

• watch

• warning

• distress

• critical

• severe

significance reason
A message that will be presented to the user explaining why the command is significant.

Unlike with other sheets, the column names are not currently enforced. Instead the column order must match
this description.

3.7.2.12 CommandVerification Sheet

This sheet defines how a command shall be verified once it has been sent for execution.

The transmission/execution of a command usual goes through multiple stages and a verifier can be associ-
ated to each stage.

Each verifier runs within a defined time window which can be relative to the release of the command or to the
completion of the previous verifier. The verifiers have three possible outcomes:

• OK
the stage has been passed successfully.

• NOK
the stage verification has failed (for example there was an error on-board when executing the
command, or the uplink was not activated).

• timeout
the condition could not be verified within the defined time interval.

For each verifier it has to be defined what happens for each of the three outputs.

Command name
The command relative name as defined in the Command sheet. Referencing commands from other
subsystems is not supported.

CmdVerifier Stage
Any name for a stage is accepted but XTCE defines the following ones:

45

• TransferredToRange

• SentFromRange

• Received

• Accepted

• Queued

• Execution

• Complete

• Failed

Yamcs interprets these as strings without any special semantics. If special actions (like declar-
ing the command as completed) are required for Complete or Failed, they have to be config-
ured in OnSuccess/OnFail/OnTimeout columns. By default command history events with the name
Verification_<stage> are generated.

CmdVerifier Type
Supported types are:

• container: the command is considered verified when the container is received. Note that this
cannot generate a Fail (NOK) condition - it's either OK if the container is received in the timewin-
dow or timeout if the container is not received.

• algorithm: the result of the algorithm run is used as the output of the verifier. If the algorithm is
not run (because it gets no inputs) or returns null, then the timeout condition applies

CmdVerifier Text
Depending on the type:

• container: is the name of the container from the Containers sheet. Reference to containers from
other space systems is not supported.

• algorithm: is the name of the algorithm from the Algorithms sheet. Reference to algorithms from
other space systems is not supported.

Time Check Window
start,stop in milliseconds defines when the verifier starts checking the command and when it stops.

checkWindow is relative to

• LastVerifier (default): the start,stop in the window definition are relative to the end of the
previous verifier. If there is no previous verifier, the start,stop are relative to the command release
time. If the previous verifier ends with timeout, this verifier will also timeout without checking
anything.

• CommandRelease: the start,stop in the window definition are relative to the command release.

OnSuccess
Defines what happens when the verification returns true. It has to be one of:

• SUCCESS: command considered completed successful (CommandComplete event is generated)

• FAIL: CommandFailed event is generated

• none (default): only a Verification_<stage> event is generated without an effect on the final
execution status of the command.

OnFail
Same as OnSuccess but the event is generated in case the verifier returns false.

OnTimeout
Same as OnSuccess but the event is generated in case the verifier times out.

46

3.7.2.13 Calibration Sheet

This sheet contains calibration data including enumerations. It has the following columns:

calibrator name (required)
Name of the calibration. Used as a reference in the Parameters (page 39) or Commands (page 43)
sheet.

type (required)
One of polynomial, spline, enumeration, java-expression or time.

Detailed in sections below.

• time for converting a raw integer or float value into a timestamp value.

calib1
Contents depends on the chosen type. See sections below.

calib2
Contents depends on the chosen type. See sections below.

3.7.2.13.1 Polynomials If the type is set to polynomial, polynomial calibration is performed.

calib1 (required)
List the coefficients, one per row starting with the constant and up to the highest grade. There is no
limit in the number of coefficients (i.e. order of polynomial).

calib2
(not used)

Note that the polynomial calibration is performed with double precision floating point numbers even though
the input and/or output may be 32 bit.

3.7.2.13.2 Splines If the type is set to spline, linear spline (pointpair) interpolation is performed. As with
polynomial calibration, the computation is performed with double precision numbers.

calib1 (required)
Start point: x from (x, y) pair.

calib2 (required)
Stop point: y from (x, y) pair.

3.7.2.13.3 Enumerations If the type is set to enumeration, the calibrator can be used to map enumera-
tion states.

calib1 (required)
Numeric value

calib2 (required)
Text state corresponding to calib1.

3.7.2.13.4 Java Expressions The type java-expression serves as a catch-all. They can be used for
float or integer calibrations.

calib1 (required)
The textual formula to be executed. This expression will be enclosed and compiled into a class like this:

package org.yamcs.mdb.jecf;
public class Expression665372494 implements org.yamcs.mdb.CalibratorProc {

public double calibrate(double rv) {
return <expression>;

}
}

47

The expression should return a double, but Java will convert implicitly any other primitive type to a
double.

Java statements cannot be used, however the ternary operator ? : can be used; for example this
expression would compile fine:

rv > 0 ? rv + 5 : rv - 5

Static functions can be also referenced. In addition to the usual Java ones (e.g. Math.sin, Math.log,
etc) user-own functions (available in the Java classpath) can be referenced by specifying the full class
name:

my.very.complicated.calibrator.Execute(rv)

calib2
(not used)

3.7.2.13.5 Time If the type is time, this calibrator allows to convert a raw integer or float value into a
timestamp value by using the raw value as an offset from a well known epoch or from another parameter.
Optionally allow to use an (offset:scale) which can be used to scale the raw value from other units (e.g.
millseconds) to seconds.

Known epochs are GPS, TAI, UNIX and J2000.

The conversion is performed as follows:

• When using a known epoch: engValue = <epoch>_yamcs_difference +
offset+rawValue*scale.

• When using another parameter p: engValue = p.engValue + offset+rawValue*scale.

calib1 (required)
Something of the shape epoch:<epoch> or parameter:<parameter reference>. The reference has
to be to a parameter of type time.

calib2
Optionally something of the shape offset:scale where both offset and scale are numbers.

If unset, this defaults to 0:1

3.7.3 Empty Node

This loader allows to create an empty node in the space system hierarchy with a given name.

For example this configuration will create two parallel nodes /N1 and /N2 and underneath each of them, load
the xls files of the simulator.

mdb:
- type: "emptyNode"
spec: "N1"
subLoaders:

- type: "sheet"
spec: "mdb/simulator-ccsds.xls"
subLoaders:

- type: "sheet"
spec: "mdb/landing.xls"

- type: "emptyNode"
spec: "N2"
subLoaders:

- type: "sheet"
spec: "mdb/simulator-ccsds.xls"
subLoaders:

- type: "sheet"
spec: "mdb/landing.xls"

48

Yamcs constructs its Mission Database on server startup from a configurable tree of loaders. Each loader
is responsible for a particular space system, and optionally its sub-space systems. It is not possible for one
loader to add to adjacent space systems.

The tree of space systems (also called a loader tree) is typically defined in the instance configuration file
etc/yamcs.instance.yaml under the mdb section:

etc/yamcs.instance.yaml

mdb:
- type: "sheet"
spec: "mdb/simulator-ccsds.xls"
subLoaders:

- type: "sheet"
spec: "mdb/simulator-tmtc.xls"

Alternatively, you can also define arbitrarily named configurations in a configuration file etc/mdb.yaml, and
then reference the configuration by that name from the instance configuration file using the key mdbSpec:

etc/mdb.yaml

simulator:
- type: "sheet"
spec: "mdb/simulator-ccsds.xls"
subLoaders:

- type: "sheet"
spec: "mdb/simulator-tmtc.xls"

etc/yamcs.instance.yaml

mdbSpec: simulator

Multiple different types of loaders may be combined in the loader tree to assemble the full mission database.
Each loader can load definitions from any source as long as the definitions can be mapped into Yamcs internal
database format, which is based on the XTCE constructs.

For start-up performance, the database is cached serialized on disk in the cache directory. The cached
database is composed of two files, one storing the data itself and the other one storing the time when the
cache file has been created. These files should be considered Yamcs internal and are subject to change.

A database loader (for example the XTCE loader) is able to load multiple space systems which will all be
added as siblings. In this case, the subLoaders option cannot be anymore specified (because otherwise it
would not be clear to which of the loaded space systems the children will be added).

Note: Yamcs does not persist TM/TC definitions and therefore does not have any "import" functionality.

49

50

4. Data Management

Yamcs contains a generic data management system that combines two fundamental principles:

• Managing static tables of data.

• Managing continuous streams of data.

Both concepts are combined in a unifying Stream SQL language.

In addition, Yamcs contains a Parameter Archive that is specifically optimized for retrieval of parameter
values. The Parameter Archive contains derived data and can be rebuilt at any time from the static database
tables.

4.1 Streams

The concept of streams was inspired from the domain of Complex Event Processing (CEP) or Stream Pro-
cessing. Streams are similar to database tables, but represent continuously moving data. SQL-like state-
ments can be defined on streams for filtering, aggregation, merging or other operations. Yamcs uses streams
for distributing data between all components running inside the same JVM. The most important place where
streams are used is to make the connection between the data links and processors.

Typically there is a stream for realtime telemetry called tm_realtime, one for realtime processed parameters
called pp_realtime, one for commands called tc, etc.

At instance startup, Yamcs will automatically create all the standard streams specified in the streamConfig
property.

streamConfig:
tm:

- name: "tm_realtime"
processor: "realtime"

- name: "tm2_realtime"
rootContainer: "/YSS/SIMULATOR/tm2_container"
processor: "realtime"

- name: "tm_dump"
tc:

- name: tc_sim
processor: realtime
tcPatterns: ["/YSS/SIMULATOR/.*"]

- name: tc_tse
processor: realtime

invalidTm: "invalid_tm_stream"
cmdHist: ["cmdhist_realtime", "cmdhist_dump"]
event: ["events_realtime", "events_dump"]
param: ["pp_realtime", "pp_tse", "sys_param", "proc_param"]
parameterAlarm: ["alarms_realtime"]
eventAlarm: ["event_alarms_realtime"]
sqlFile: "etc/extra_streams.sql"

The configuration contains an entry for each default stream type:

tm (list)
contains a list of TM streams. Each stream has an mandatory name, and an optional processor and

51

rootContainer properties. The processor property is used to attach the stream to a specific processor.
If no processor is specified, the stream can still be used for example for recording the data in the archive
- this is typical for a dump stream that retrieves non realtime data. The rootContainer property specifies
which XTCE container shall be used for processing the packets on this stream.

tc (list)
contains a list of TC streams. Each stream has a mandatory name and an optional processor and tc-
Patterns properties. The processor is used to attach the stream to a specific processor. If no processor
is specified, the stream can be used by other services. For example the CFDP service will push the
CFDP PDUs to a stream from which they can be copied to a TC stream using some sql commands
(as demonstrated in the cfdp example). The tcPatterns property is used to determine which command
will be sent via this stream. It contains a list of regular expressions which are matched against the
command fully qualified name. If the patterns are not specified, it means that all commands will match.
The ordering of the streams in this list is important because once a command has matched one stream,
the other streams are not checked.

invalidTm (list)
list of streams on which invalid telemetry packets are sent. These may be used in the data links
configuration, to allow saving the telemetry packets which are declared by the preprocessor as invalid
(and thus not sent for further processing on the normal tm stream).

cmdHist (list)
streams used for the command history. No additional option in addition to the stream name is sup-
ported.

event
streams used for events. No additional option in addition to the stream name is supported. Note
that many components use the "events_realtime" stream to publish realtime events so this stream
should always be present in the list and its name should not be changed. Some components (e.g.
PusEventDecoder) use the events_dump stream but usually that stream name is configurable.

param
streams used for parameters. No additional option in addition to the stream name is supported.

parameterAlarm
streams used for parameter alarms. No additional option in addition to the stream name is supported.

eventAlarm
streams used for event alarms. No additional option in addition to the stream name is supported.

sqlFile (string)
this is not a stream type but a reference to a file containing Stream sql statements that will be executed
on instance startup. The file can create additional (non-standard) streams or tables.

4.2 Generic Archive

4.2.1 Telemetry Packets

This table is created by the XTCE TM Recorder (page 121) and uses the generation time and sequence
number as primary key:

CREATE TABLE tm(
gentime TIMESTAMP,
seqNum INT,
packet BINARY,
pname ENUM,
PRIMARY KEY(

gentime,
seqNum

)
) HISTOGRAM(pname) PARTITION BY VALUE(pname) TABLE_FORMAT=compressed;

52

Where the columns are:

• gentime
generation time of the packet.

• seqNum
an increasing sequence number.

• packet
the binary packet.

• pname
the fully-qualified name name of the container. In a container hierarchy, one has to configure which
containers are used as partitions. This can be done by setting a flag in the spreadsheet.

If a packet arrives with the same time and sequence number as another packet already in the archive, it is
considered duplicate and shall not be stored.

The HISTOGRAM(pname) clause means that Yamcs will build an overview that can be used to quickly see
when data for the given packet name is available in the archive.

The PARTITION BY VALUE clause means that data is partitioned in different RocksDB column families based
on the container name. This has benefits when retrieving data for one specific container for a time interval. If
this is not desired, one can set the partitioning flag only on the root container (in fact it is automatically set)
so that all packets are stored in the same partition.

4.2.2 Events

This table is created by the Event Recorder (page 112) and uses the generation time, source and sequence
number as primary key:

CREATE TABLE events(
gentime TIMESTAMP,
source ENUM,
seqNum INT,
body PROTOBUF('org.yamcs.protobuf.Yamcs$Event'),
PRIMARY KEY(

gentime,
source,
seqNum

)
) HISTOGRAM(source) partition by time(gentime) table_format=compressed;

Where the columns are:

• gentime
the generation time of the command set by the originator.

• source
a string representing the source of the events.

• seqNum
a sequence number provided by the event source. Each source is expected to keep an independent
sequence count for the events it generates.

4.2.3 Command History

This table is created by the Command History Recorder (page 112) and uses the generation time, origin and
sequence number as primary key:

53

CREATE TABLE cmdhist(
gentime TIMESTAMP,
origin STRING,
seqNum INT,
cmdName STRING,
binary BINARY,
PRIMARY KEY(

gentime,
origin,
seqNum

)
) HISTOGRAM(cmdName) PARTITION BY TIME(gentime) table_format=compressed;

Where the columns are:

• gentime
the generation time of the command set by the originator.

• origin
a string representing the originator of the command.

• seqNum
a sequence number provided by the originator. Each command originator is supposed to keep an
independent sequence count for the commands it sends.

• cmdName
the fully qualified name of the command.

• binary
the binary packet contents.

In addition to these columns, there will be numerous dynamic columns set by the command verifiers, com-
mand releasers, etc.

Recording data into this table is setup with the following statements:

INSERT_APPEND INTO cmdhist SELECT * FROM cmdhist_realtime;
INSERT_APPEND INTO cmdhist SELECT * FROM cmdhist_dump;

The INSERT_APPEND clause says that if a tuple with the new key is received on one of the cmdhist_realtime
or cmdhist_dump streams, it will be just inserted into the cmdhist table. If however, a tuple with a key that
already exists in the table is received, the columns that are new in the newly received tuple are appended to
the already existing columns in the table.

4.2.4 Alarms

This table is created by the Alarm Recorder (page 111) and uses the trigger time, parameter name and
sequence number as primary key:

CREATE TABLE alarms(
triggerTime TIMESTAMP,
parameter STRING,
seqNum INT,
PRIMARY KEY(

triggerTime,
parameter,
seqNum

)
) table_format=compressed;

Where the columns are:

• triggerTime
the time when the alarm has been triggered. Until an alarm is acknowledged, there will not be a new
alarm generated for that parameter (even if it were to go back in limits)

54

• parameter
the fully qualified name of the parameter for which the alarm has been triggered.

• seqNum
a sequence number increasing with each new triggered alarm. The sequence number will reset to 0 at
Yamcs restart.

4.2.5 Parameters

This table is created by the Parameter Recorder (page 118) and uses the generation time and sequence
number as primary key:

CREATE TABLE pp(
gentime TIMESTAMP,
ppgroup ENUM,
seqNum INT,
rectime TIMESTAMP,
primary key(

gentime,
seqNum

)
) histogram(ppgroup) PARTITION BY TIME_AND_VALUE(gentime,ppgroup) table_format=compressed;

Where the columns are:

• gentime
the generation time of the command set by the originator.

• ppgroup
a string used to group parameters. The parameters sharing the same group and the same timestamp
are stored together.

• seqNum
a sequence number supposed to be increasing independently for each group.

• rectime
the time when the parameters have been received by Yamcs.

In addition to these columns that are statically created, the pp table will store columns with the name of the
parameter and the type PROTOBUF(org.yamcs.protobuf.Pvalue$ParameterValue).

Note: Because partitioning by ppgroup is specified, this is also implicitly part of the primary key, but not
stored as such in the RocksDB key.

Yamcs Generic Archive is composed of tables that store data emitted by streams.

Like streams, the tables have a variable number of columns of predefined types. Tables have a primary key
composed of one or more columns. The primary key columns are mandatory, a tuple that does not have
them will not be stored in the table.

The primary key is used to sort the data. Yamcs uses a (key, value) storage engine (currently RocksDB) for
storing the data. Both key and value are byte arrays. Yamcs uses the serialized primary key of the table as
the key in RocksDb and the remaining columns serialized as the value.

Although not enforced by Yamcs, it is usual to have the time as part of the primary key.

Yamcs stores time ordered tuples (t, v1, v2...vn) where t is the time and v1, v2, vn are values of various types.
The tables are row-oriented and optimized for accessing entire records (e.g. a packet or a group of processed
parameters).

Yamcs defines a standard set of tables for storing raw telemetry packets, commands, events, alarms and
processed parameters.

55

4.3 Parameter Archive

4.3.1 Archive Filling

There are two fillers that can be used to populate Parameter Archive:

Realtime Filling
The RealtimeFillerTask will subscribe to a realtime processor and write the parameter values to the
archive.

Backfilling
The ArchiveFillerTask will create from time to time replays from the raw data in the Telemetry Packets
(page 52) and Parameters (page 55) tables of the Generic Archive.

Due to the fact that data is stored in segments, one segment being a value in the (key, value) RocksDB, it is
not efficient to write one row (data corresponding to one timestamp) at a time. It is much more efficient to
collect data and write entire or at least partial segments at a time.

The realtime filler will write the partial segments to the archive at each configurable interval. When retrieving
data from the Parameter Archive, the latest (near realtime) data will be missing from the archive. That is why
Yamcs uses the processor parameter cache to retrieve the near-realtime values.

The backFiller is by default enabled and it can also be used to issue rebuild requests over HTTP. The realtime-
Filler has to be enabled in the configuration and the flushInterval (how often to flush the data in the archive)
has to be specified. The flushInterval has to be smaller than the duration configured in the parameter cache.

The backFiller is configured with a so called warmupTime (by default 60 seconds) which means that when
it performs a replay, it starts the replay earlier by the specified warmupTime amount. The reason is that if
there are any algorithms that depend on some parameters in the past for computing the current value, this
should give them the chance to warmup. The data generated during the warmup is not stored in the archive
(because it is part of the previous segment).

4.3.2 Parameter Archive Internals

The Parameter Archive stores for each parameter tuples (ti, evi, rvi, psi). In Yamcs the timestamp is 8 bytes
long, the raw and engineering values are of usual types (signed/unsigned 32/64 integer, 32/64 floating point,
string, boolean, binary) and the parameter status is a protobuf message.

In a typical space data stream there are many parameters that do not change very often (like an device
ON/OFF status). For these, the space required to store the timestamp can greatly exceed in size the space
required for storing the value (if simple compression is used).

In fact since the timestamps are 8 bytes long, they equal or exceed in size the parameter values almost in all
cases, even for parameters that do change.

To reduce the size of the archive, some alternative parameter archives may choose to store only the values
when they change with respect to the previous value. Often, like in the above "device ON/OFF" example,
the exact timestamps of the non-changing parameter values, received in between actual (but rare) value
changes are not very important. One has to take care that gaps in the data are not mistaken for non-changing
parameter values.

Storing the values on change only will reduce the space required not only for the value but also (and more
importantly) for the timestamp.

However, we know that more often than not parameters are not sampled individually but in packets or frames,
and many (if not all) the parameters from one packet share the same timestamp.

Usually some of the parameters in these packets are counters or other things that do change with each
sampling of the value. It follows that at least for storing those ever changing parameter values, one has to
store the timestamps anyway.

This is why, in Yamcs we do not adopt the "store on change only" strategy but a different one: we store the
timestamps in one record and make reference to that record from all the parameters sharing those same

56

timestamps. Of course it wouldn't make any sense to reference one singe timestamp value, instead we store
multiple values in a segment and reference the time segment from all value segments that are related to it.

4.3.2.1 Archive Structure

We have established that the Yamcs Parameter Archive stores rows of data of shape: (t, pv0, pv1, pv2,..., pvn)

Where pv0, pv1, pv2..pvn are parameter values (for different parameters) all sharing the same timestamp t.
One advantage of seeing the data this way is that we do keep together parameters extracted from the same
packet (and having the same timestamp). It is sometimes useful for operators to know a specific parameter
from which packet has been extracted (e.g. which APID, packet ID in a CCSDS packet structure).

The Parameter Archive partitions the data at two levels:

1. time partitioned in partitions of 231 milliseconds duration (~ 25 days). Each partition is stored in its own
ColumnDataFamily in RocksDB (which means separate files and the possibility to remove an entire
partition at a time).

2. Inside each partition, data is segmented in segments of 222 milliseconds (~ 70 minutes) duration. One
data segment contains all the engineering values or raw values or parameter status for one parameter.
A time segment contains all the corresponding timestamps.

This means that each parameter requires each ~70 minutes three segments for storing the raw, engineering
and status plus a segment containing the timestamps. The timestamp segment is shared with other parame-
ters. In order to be able to efficiently compress and work with the data, one segment stores data of one type
only.

Each (parameter_fqn, eng_type, raw_type) combination is given an unique 4 bytes parameter_id (fqn =
fully qualified name). We do this in order to be able to accommodate changes in parameter definitions in
subsequent versions of the mission database.

The parameter_id 0 is reserved for the timestamp.

A ParameterGroup represents a list of parameter_id which share the same timestamp.

Each ParameterGroup is given a ParameterGroup_id

4.3.2.2 Column Families

For storing metadata we have 2 CFs:

meta_p2pid
contains the mapping between the fully-qualified parameter name and parameter_id and type

meta_pgid2pg
contains the mapping between ParameterGroup_id and parameter_id

For storing parameter values and timestamps we have 1CF per partition: data_partition_id where
partition_id is basetimestamp (i.e. the start timestamp of the 231 long partitions) in hexadecimal (without
0x in front)

Inside the data partitions we store (key, value) records where:

key
parameter_id, ParameterGroup_id, segment_start_time, type (the type = 0, 1 or 2 for the eng value,
raw value or parameter status)

value
ValueSegment or TimeSegment (if parameter_id = 0)

We can notice from this organization, that inside one partition, the segments containing data for one parame-
ter follows in the RocksDB files in sequence of engvaluesegment_1, rawvaluesegment_1, parameterstatussegment_1,
engvaluesegment_2, rawvaluesegment_2, ...

57

4.3.2.3 Segment Encoding

The segments are compressed in different ways depending on their types.

SortedTimeSegment
Stores the timestamps as uint32 deltas from the beginning of the segment. The data is first encoded
into deltas of deltas, then it's zigzag encoded (such that it becomes positive) and then it's encoded
with FastPFOR and VarInt. FastPFOR encodes blocks of 128 bytes so VarInt encoding is used for the
remaining data.

Storing timestamps as deltas of deltas helps if the data is sampled at regular intervals (especially
by a real-time system). In this case the encoded deltas of deltas become very close to 0 and that
compresses very well.

Description of the VarInt and zigzag encoding can be found in Protocol Buffer docs29.

Description and implementation of the FastPFOR algorithm can be found at https://github.com/lemire/
JavaFastPFOR.

IntSegment
Stores int32 or uint32 encoded same way as the time segment.

FloatSegment
Stores 32 bits floating point numbers encoded using the algorithm described in the Facebook Gorilla
paper30 (slightly modified to work on 32 bits).

ParameterStatusSegment, StringSegment and BinarySegment
These are all stored either raw, as an enumeration, or run-length encoded, depending on which results
in smaller compressed size.

DoubleSegment and LongSegment
These are only stored as raw for the moment - compression remains to be implemented. For Dou-
bleSegment we can employ the same approach like for 32 bits (since the original approach is in fact
designed for compressing 64 bits floating point numbers).

4.3.2.4 Future Work

Segment Compression
Compression for DoubleSegment and LongSegment. DoubleSegment is straightforward, for LongSeg-
ment one has to dig into the FastPFOR algorithm to understand how to change it for 64 bits.

Archive Filling
It would be desirable to backfill only parts of the archive. Indeed, some ground generated data may not
suffer necessarily of gaps and could be just realtime filled. Currently there is no possibility to specify
what parts of the archive to be back-filled.

Another useful feature would be to trigger the back filling automatically when gaps are filled in Yamcs
database tables.

The Parameter Archive stores time ordered parameter values. The parameter archive is column oriented and
is optimized for accessing a (relatively small) number of parameters over longer periods of time.

The Parameter Archive stores for each parameter tuples of (ti, evi, rvi, psi) where:

ti

the generation timestamp of the value. The reception timestamp is not stored in the Parameter Archive.

evi

the engineering value of the parameter at the given time.

rvi

the raw value of the parameter at the given time.

29 https://developers.google.com/protocol-buffers/docs/encoding
30 http://www.vldb.org/pvldb/vol8/p1816-teller.pdf

58

https://developers.google.com/protocol-buffers/docs/encoding
https://github.com/lemire/JavaFastPFOR
https://github.com/lemire/JavaFastPFOR
http://www.vldb.org/pvldb/vol8/p1816-teller.pdf
http://www.vldb.org/pvldb/vol8/p1816-teller.pdf

psi

the parameter status of the parameter at the given time.

The parameter status includes attributes such as out-of-limits indicators (alarms) and processing status.
Yamcs Mission Database provides a mechanism through which a parameter can change its alarm ranges
depending on the context. For this reason the Parameter Archive also stores the parameter status and the
applicable alarm ranges at the given time.

In order to speed up the retrieval, the Parameter Archive stores data in segments of approximately 70 minutes.
That means that all engineering values for one parameter for the 70 minutes are stored together; same for
raw values, parameter status and timestamps.

Having all the data inside one segment of the same type offers possibility for good compression especially if
the values do not change much or at all (as it is often the case).

While this structure is good for fast retrieval, it does not allow updating data very efficiently and in any case
not in realtime. This is why the Parameter Archive is filled in batch mode. Data is accumulated in memory
and flushed to disk periodically using different filling strategies.

4.4 Object Archive (buckets)

The Yamcs object archive is used to store general data objects (images, files, etc) which are generally un-
structured information. The objects are grouped into buckets; each bucket has a name and is simply a
collection of related objects.

Inside a bucket each object is identified by an name and has associated a set of metadata. The name is
usually (but not necessarily) a UNIX directory like path /a/b/c/ and the metadata is a list of key: value
where both the key and the value are strings.

Yamcs supports two ways of storing the objects: inside the RocksDB database or on the server filesystem
as files. For RocksDB buckets, each object is stored in a (key, value) record, the key is the object name
prepended by a prefix identifying the bucket and the value is the object data. For filesystem buckets, each
bucket represents a directory on disk and the objects are the files in that directory (including subdirectories).
The filesystem buckets do not support metadata currently.

A bucket is limited to 100MB in size and maximum 1000 objects. In addition, the HTTP API imposes a limit
of 5MB for each uploaded object. Note that since the filesystem buckets can be changed outside Yamcs (just
copying files in a directory) the total size limit or the number of objects limit may be exceeded.

The RocksDB buckets can be created in the configuration or programmatically using the HTTP API31.

4.4.1 Buckets

The buckets keyword in etc/yamcs.yaml defines a list of buckets.

buckets:
- name: mybucket
- name: cfdpUp
path: ../../cfdpUp

4.4.1.1 Options

name (string)
The name of the bucket. The name must contain only letters, digits or underscores.

path (string)
If this option is present the bucket is a filesystem bucket and a directory with the given path will be

31 https://docs.yamcs.org/yamcs-http-api/buckets

59

https://docs.yamcs.org/yamcs-http-api/buckets

created if not already existing. If omitted, this bucket will be stored binary in the Yamcs database
(RocksDB).

maxSize (number)
The maximum allowed size of the bucket in bytes.

maxObjects (number)
The maximum allowed number of objects in this bucket.

Note: The maxSize and maxObjects are enforced when new objects are added to the bucket. It is possible
for limits to be lower than the actual usage. For example, when they have been reconfigured. Or, in the case
of filesystem buckets, because content has changed outside of Yamcs.

4.4.2 Bucket Providers

A plugin mechanism is available to add custom bucket providers. Currently the only such implementation is
called remote-yamcs, which allows Yamcs to interact with a bucket on another server of Yamcs.

This can be activated by setting the bucketProviders property in etc/yamcs.yaml. In the following ex-
ample, Yamcs will reach out to a yamcs2 server with the provided credentials (Basic Auth only) to locate a
remote bucket named foo and map this to a local bucket named bar. Any read or write in bar is actually
done on the yamcs2 server in the foo bucket:

bucketProviders:
- type: remote-yamcs
yamcsUrl: https://yamcs2.example.com
username: admin
password: test
buckets:

- name: foo
localName: bar

4.4.2.1 Options

yamcsUrl (string)
Required. The URL of the remote Yamcs server; The URL has to include http or https.

username (string)
Username to connect to the upstream Yamcs server (if authentication is enabled); has to be set together
with password.

password (string)
Password to connect to the upstream Yamcs server (if authentication is enabled); has to be set together
with username.

verifyTls (boolean)
If the connection is over TLS (when yamcsUrl starts with https), this option can enable/disable the
verification of the server certificate against local accepted CA list. Default: true

buckets (list of maps)
Buckets to consider. Any remote bucket not in this list is ignored. For each bucket at least the name
should be specified. Specify also localName if you want the local name to be different than the remote
name.

60

5. Data Links

Data Links represent special components that communicate with the target instrument or spacecraft. There
are three types of Data Links: TM, TC and PP (processed parameters). TM and PP receive telemetry packets
or parameters and inject them into the realtime or dump TM or PP streams. The TC data links subscribe to
the realtime TC stream and send data to the external systems.

Data Links can report on their status and can also be controlled by an operator to connect or disconnect from
their data source.

Note that any Yamcs Service can connect to external sources and inject data in the streams. Data links
however, can report on their status using a predefined interface and can also be controlled to connect or
disconnect from their data source.

Data links are defined in etc/yamcs.instance.yaml. Example:

dataLinks:
- name: tm_realtime
class: org.yamcs.tctm.TcpTmDataLink
enabledAtStartup: true
stream: tm_realtime
invalidPackets: DIVERT
invalidPacketsStream: invalid_tm_stream
....

General configuration options.

name (string)
Required. The name that will be assigned to the link. Each link needs a unique name; the name can
be seen in the user interface and can be used for API calls.

class (string)
Required. The name of the class that is implementing the link. The class has to implement the Link32

interface.

enabledAtStartup (boolean)
If set to false, the link will be disabled at startup. When true, the link will be enabled at startup.

If unset, the link's enabled/disabled state is restored from a previous run, defaulting to enabled.

stream (string)
The name of the stream where the data is taken from or injected into.

tmStream (string)
This is an alternative to stream; can be used for links serving more than one of TM, TC or PP (processed
parameters).

tcStream (string)
This is an alternative to stream; can be used for links serving more than one of TM, TC or PP.

ppStream (string)
This is an alternative to stream; can be used for links serving more than one of TM, TC or PP.

32 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/Link.html

61

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/Link.html

invalidPackets (string)
One of DROP, PROCESS or DIVERT. Used for TM links to specify what happens with the packets that the
pre-processor decides are invalid:

DROP means they are discarded.

PROCESS means they are put on the normal stream (configured with the stream parameter), same like
the valid packets.

DIVERT means they are put on another stream specified by the option invalidPacketsStream.

invalidPacketsStream (string)
If invalidPackets is set to DIVERT, this configures the stream where the packets are sent.

updateSimulationTime (boolean)
If set to true, the link will update the simulation time using the generation time of each packet received.
The SimulationTimeService has to be configured for the instance, otherwise an error will be raised at
startup.

Other options are link-specific and documented in their respective sections.

5.1 Packet Pre-processor

Yamcs generally uses the Mission Database to process telemetry packets. When data is received from
external systems, there are two processing steps done as part of the Data Link which are outside the Mission
Database definition:

1. Splitting a data stream into packets. This is done only for the links that receive data as a stream (e.g.
TCP). For Data Links where input is naturally split into frames (e.g. UDP) this step is not necessary
and not performed.

2. Pre-processing of packets in order to detect/correct errors and to retrieve basic information about the
packets.

5.1.1 Stream Splitting

The data stream splitter is a java class that implements the PacketInputStream33 interface.

A generic splitter for binary streams is defined in GenericPacketInputStream34. This class can split a stream
based on a packet length that is encoded in a header. It requires all packets to have the length on the same
number of bytes.

5.1.2 Packet pre-processing

The packet pre-processor is a java class that implements the PacketPreprocessor35 interface.

It is responsible for error detection (and possibly correction) and extracting basic information required for
further packet processing:

• packet generation time: it represents the time when the packet has been generated on-board.

• sequence count: a number used to distinguish two packets having the same timestamp.

The generation time and sequence count are used as primary key in the tm table in the archive. That means
they have to uniquely identify a packet; if the archive receives a new packet with the same (generation time,
sequence count) as an existing packet in the archive, it will be considered a duplicate and discarded.

33 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/PacketInputStream.html
34 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/GenericPacketInputStream.html
35 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/PacketPreprocessor.html

62

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/PacketInputStream.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/GenericPacketInputStream.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/PacketPreprocessor.html

The sequence count is used to distinguish two packets that have the same timestamp; it does not need to be
incremental. For example the IssPacketPreprocessor36 uses the first 4 bytes of the CCSDS primary header
(containing APID and CCSDS sequence count among others) as sequence count for the telemetry stream.

Each mission has specific ways to encode information in the header but there are some standards supported
to a certain extent by Yamcs:

• PUS (Packet Utilisation Standard) from ESA (European Space Agency): implemented in PusPacket-
Preprocessor37.

• NASA (National Aeronautics and Space Administration) cFS: implemented in CfsPacketPreproces-
sor38.

• CSP (CubeSat Space Protocol): implemented in CspPacketPreprocessor39.

Generation Time

A particular difficulty when writing a pre-processor is dealing with the generation time. Yamcs originated in
the ISS world where all the payloads and instruments are time synchronized to GPS and each packet sent
to ground has a reliable timestamp. This is of course not true for all spacecrafts - most on-board computer
have just an internal clock count which resets to 0 when the computer is restarted.

The Yamcs archive needs the generation time for all its functions, not having it means that a large part of the
functionality of Yamcs is not usable.

There are different mechanisms to synchronize the on-board time with the ground:

• Do not attempt to synchronize the time. The pre-processor can use local generation (computer) recep-
tion time as generation time. The on-board time will be still available as a parameter if defined in the
MDB. This method is especially useful when using Yamcs as part of a test and check-out system, the
system under test might be incomplete and have no (reliable) clock at all. The disadvantage is that
when receiving data in non-realtime (e.g. recorded on board or in a ground station), it will not fit orderly
in the archive.

• Synchronize the on-board system to the ground each time it resets. This is the method employed by
CFS (Core Flight System). It allows setting a spacecraft time correction factor (STCF) on-board and
that will make the on-board time correlated to the ground.

• Maintain a correlation factor on ground, his is the method specified by ESA PUS standard. In this
case the packet pre-processor has to implement the time correlation. The Time Correlation Service
(page 122) can be used to correlate the on-board time with the ground time.

Regardless of which method is used, it is important that the pre-processor does not generate packets with
wrong timestamps. These might be difficult to locate and remove from the archive later.

Time Decoding

The packet pre-processors can use time decoders to decode the time from the packet. The time decoders
are classes implementing the TimeDecoder40 interface. All the pre-processors extending the AbstractPack-
etPreprocessor41 will have access to the time decoders configured by the timeEncoding option.

The time decoders are responsible for providing a relative time in milliseconds; the relative time is converted
to an absolute time using a specified epoch.

If there is no epoch specified, the time is considered raw and the Time Correlation Service (page 122)
service is used for converting the time to an absolute time. This is the case when the on-board time is not
synchronized to anything and the time in the packet is the value of an on-board computer clock which is just

36 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/IssPacketPreprocessor.html
37 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/pus/PusPacketPreprocessor.html
38 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/cfs/CfsPacketPreprocessor.html
39 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/csp/CspPacketPreprocessor.html
40 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/time/TimeDecoder.html
41 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/AbstractPacketPreprocessor.html

63

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/IssPacketPreprocessor.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/pus/PusPacketPreprocessor.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/pus/PusPacketPreprocessor.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/cfs/CfsPacketPreprocessor.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/cfs/CfsPacketPreprocessor.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/csp/CspPacketPreprocessor.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/time/TimeDecoder.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/AbstractPacketPreprocessor.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/AbstractPacketPreprocessor.html

a counter most likely initialized at 0 when the on-board computer resets. The raw times do not have units, it
is up to the time decoder to decide what value to return; the requirement however is to be linearly correlated
to the time. The time correlation service will compute the gradient and the offset that can be used to convert
the raw value to an absolute time.

There are a few common options for all time decoders:

epoch (string)
Specifies to which epoch the time relates to. Can be one of:

• TAI - the time is a delta from 1-Jan-1958, as recommended by CCSDS Time Code Formats.

• J2000 - the time is a delta from J2000 epoch which corresponds to 2000-01-01T11:58:55.816
UTC.

• GPS - the time is a delta from GPS epoch which corresponds to 1980-01-6T00:00:00 UTC.

• UNIX - the time corresponds to the time as kept by UNIX - that is a pseudo-number of seconds
from 1-Jan-1970. We say "pseudo" because this time does not include leap seconds and therefore
it is not a true delta time from the epoch (and the epoch is anyway not well defined). However
that number can be used to calculate a UTC time (by applying Gregorian-calendar conventions).
Yamcs will convert that time to the internal time format by adding the leap seconds.

• CUSTOM - the time corresponds to a delta or pseudo delta specified in the option epochUTC.

• NONE - the time read from the packet is not a delta from an epoch but rather the value of free
running clock . A time correlation service can be used to translate that value to a real time.

epochUTC (ISO8601 string)
If the epoch is defined as CUSTOM, can be used to specify the UTC time from which the decoded time
is a delta or pseudo-delta.

timeIncludesLeapSeconds: (boolean)
If the epoch is defined as CUSTOM, can be used to specify if the time read from that epoch includes the
leap seconds (meaning it is a true delta time). If the value is false, Yamcs will add the missing leap
seconds between the time specified in the epochUTC and the time read from the packet.

From the 4 standard epochs (TAI, J2000, GPS and UNIX), only the UNIX time will have this set to false.
Default: true

Two time decoder types are currently implemented: CUC and FIXED.

CUC time decoder

CUC which is an abbreviation for CCSDS Unsegmented time Code. Unsegmented means that the entire time
field can be seen as a continuous integer counter of the fractional time unit. A segmented time code for
example one which provides days and millisecond of the day and in which a 32 bit field is used to represent
the millisecond of the day is not continuous because there are less than 232 milliseconds in a day.

The time is decoded as specified in CCSDS Time Code Formats CCSDS 301.0-B-442, Chapter 3.2. In short
the time is encoded as an optional 1 or 2 bytes pfield (preamble field) followed by a 1-7 bytes basic time
followed by a 0-10 bytes fractional time. The pfield specifies the length in bytes of the basic and fractional
times.

For example pfield = 0x2E means that the basic time is encoded on 4 bytes and the fractional time is
encoded on 2 bytes, making the length of the time in the packet 6 bytes when the pfield is implicit or 7 bytes
when it is part of the packet.

The pfield contains some information about the epoch used. This information is ignored, the epoch is
configured with the epoch option, as described below.

The standard allows in principle more than 2 pfield bytes but this is not supported (a custom time decoder
has to be used in this case).

42 https://public.ccsds.org/Pubs/301x0b4e1.pdf

64

https://public.ccsds.org/Pubs/301x0b4e1.pdf

The CUC decoder can work in two modes depending whether the time decoded is a delta time from a
configured epoch or the value of a free running on-board clock.

If the time decoded is a delta time from a configured epoch (epoch is different than NONE), the CUC decoder
assumes the basic time unit to be the second and it decodes the time to a delta or pseudo-delta from the
epoch. The precision is milliseconds (as all time storage in Yamcs), irrespective of the precision used in the
encoded time - this means that at maximum two bytes of fractional time will be used. If the fractional time
is 2 bytes (i.e. each fractional unit is 1/216 seconds) or more, it will be be down-rounded when converted to
Yamcs time. The maximum length of supported basic time is 6 bytes; this is because 7 or more bytes cannot
be converted to 64 bits milliseconds.

When the decoded time is the value of a free running on-board clock (epoch is NONE), the CUC decoder
provides the "raw" time in the unit of the fractional time (without any precision loss). The time is decoded as a
big endian value on bn+fn bytes where bt is the number of basic time bytes and fn is the number of fractional
time bytes (as read from the pfield). Practically in this case the decoder doesn't make distinction between
basic time and fractional time (this works because the time is unsegmented). The value thus obtained is
expected to be passed to a Time Correlation Service (page 122) which will convert it to an actual time,
automatically detecting the unit of the fractional time.

The maximum supported length of the "raw" time is 8 bytes, if the time is encoded on 9 or more bytes, an
exception will be thrown in the decodeRaw() method.

CUC decoder configuration options:

type (string)
Has to be CUC to select the CUC decoder.

implicitPField (integer)
If the pfield is not encoded in the packet, it can be set by this option.

A value of -1 means that the pfield is explicitly provided in the packet. Default: -1.

implicitPFieldCont (integer)
This can be used to configure the next octet of the pfield in case the first bit of the first octet (specified
above) is 1.

FIXED time decoder

The FIXED decoder decodes the time as a signed integer on 4 or 8 bytes and has an optional multiplier to
convert the integer to milliseconds. The multiplier is not used when decoding the time as raw time (i.e. when
the epoch is NONE).

FIXED decoder options:

type (string)
Has to be FIXED to select the FIXED decoder.

size(integer)
number of bytes containing the time. It has to be 4 or 8. Default: 8

multiplier (double)
used to transform the extracted integer to milliseconds. Default: 1.0

5.1.3 Pre-processor Configuration

The AbstractPacketPreprocessor43 provides some general configuration options which can be used in custom
pre-processors and are used in the PUS and CFS pre-processors.

43 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/AbstractPacketPreprocessor.html

65

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/AbstractPacketPreprocessor.html

Example

dataLinks:
- name: tm_realtime
...
packetPreprocessorClassName: org.yamcs.tctm.pus.PusPacketPreprocessor
packetPreprocessorArgs:
errorDetection:
type: CRC-16-CCIIT

useLocalGenerationTime: false
timeEncoding:
type: CUC
epoch: CUSTOM
epochUTC: "2010-09-01T00:00:00Z"
timeIncludesLeapSeconds: true

tcoService: tco0

Configuration Options

errorDetection (map)
If specified, the errorDetectionCalculator object will be made available to the pre-processor to calculate
the CRC used to verify the integrity of the packet. The sub-options are:

type (string)
Required. Can take one of the values:

• 16-SUM: calculates a 16 bits checksum over the entire packet which has to contain an even
number of bytes. This checksum is used in Columbus/ISS data.

• CRC-16-CCIIT: standard CRC algorithm used in PUS and also in CCSDS standards for frame
encoding.

• ISO-16: specified in PUS as alternative to CRC-16-CCIIT.

• NONE: no error detection will be used, this is the default if the errorDetection map is not
present.

initialValue (integer)
Used when the type is CRC-16-CCIIT to specify the initial value used for the algorithm. Default:
0xFFFF.

userLocalGenerationTime (boolean)
If true, the packets will be timestamp with local mission time rather than the time extracted from the
packets. Default: false.

timeEncoding (map)
This contains instructions from how to read the time from the packet. See above for description on how
to configure the time decoder.

5.2 Command Post-Processor

Similar to the TM packet pre-processors, the command post-processors are used to change the command
before being sent out on the data link. The post-processors are java classes that implement the Command-
Postprocessor44 interface.

Typical tasks performed by the post-processors are:

• assigning a sequence count (e.g. the CCSDS sequence counts are assigned per APID)

• computing and appending a checksum or CRC

44 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/CommandPostprocessor.html

66

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/CommandPostprocessor.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/CommandPostprocessor.html

5.3 File Polling TM Data Link

Reads data from files in a directory, importing it into the configured stream. The directory is polled regularly
for new files and the files are imported one by one. After the import, the file is removed.

5.3.1 Class Name

org.yamcs.tctm.FilePollingTmDataLink45

5.3.2 Configuration Options

stream (string)
Required. The stream where data is emitted

incomingDir (string)
Required. The directory where the data will be read from.

deleteAfterImport (boolean)
Remove the file after importing all the data. By default set to true, can be set to false to import the
same data again and again.

delayBetweenPackets (integer)
When importing a file, wait this many milliseconds after each packet. This option together with the
previous one can be used to simulate incoming realtime data.

packetPreprocessorClassName (string)
Class name of a PacketPreprocessor46 implementation. Default is
org.yamcs.tctm.IssPacketPreprocessor47 which applies ISS conventions.

packetPreprocessorArgs (map)
Optional args of arbitrary complexity to pass to the PacketPreprocessor. Each PacketPreprocessor
may support different options.

lastPacketStream (string)
Optional stream name. If specified, the last packet in an imported file, is emitted to this stream, in
addition to the regular stream defined with the stream option.

The intended use case, is to have stream: tm_dump and lastPacketStream: tm_realtime.
Then most data goes directly into the Archive, while only the last packet's data goes to realtime clients.

5.4 TCP TC Data Link

Sends telecommands via TCP.

5.4.1 Class Name

org.yamcs.tctm.TcpTcDataLink48

45 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/FilePollingTmDataLink.html
46 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/PacketPreprocessor.html
47 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/IssPacketPreprocessor.html
48 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/TcpTcDataLink.html

67

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/FilePollingTmDataLink.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/PacketPreprocessor.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/IssPacketPreprocessor.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/TcpTcDataLink.html

5.4.2 Configuration Options

stream (string)
Required. The stream where command instructions are received

host (string)
Required. The host of the TC provider

port (integer)
Required. The TCP port to connect to

tcQueueSize (integer)
Limit the size of the queue. Default: unlimited

tcMaxRate (integer)
Ensure that on overage no more than tcMaxRate commands are issued during any given second.
Default: unspecified

commandPostprocessorClassName (string)
Class name of a CommandPostprocessor49 implementation. Default is
org.yamcs.tctm.IssCommandPostprocessor50 which applies ISS conventions.

commandPostprocessorArgs (map)
Optional args of arbitrary complexity to pass to the CommandPostprocessor. Each CommandPostpro-
cessor may support different options.

5.5 TCP TM Data Link

Provides packets received via plain TCP sockets.

In case the TCP connection with the telemetry server cannot be opened or is broken, it retries to connect
each 10 seconds.

5.5.1 Class Name

org.yamcs.tctm.TcpTmDataLink51

5.5.2 Configuration Options

host (string)
Required. The host of the TM provider

port (integer)
Required. The TCP port to connect to

stream (string)
Required. The stream where data is emitted

packetInputStreamClassName (string)
Class name of a PacketInputStream52. Default is org.yamcs.tctm.CcsdsPacketInputStream53 which
reads CCSDS Packets.

packetInputStreamArgs (map)
Optional args of arbitrary complexity to pass to the PacketInputStream. Each PacketInputStream may
support different options.

49 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/CommandPostprocessor.html
50 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/IssCommandPostprocessor.html
51 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/TcpTmDataLink.html
52 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/PacketInputStream.html
53 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/CcsdsPacketInputStream.html

68

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/CommandPostprocessor.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/IssCommandPostprocessor.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/TcpTmDataLink.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/PacketInputStream.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/CcsdsPacketInputStream.html

packetPreprocessorClassName (string)
Class name of a PacketPreprocessor54 implementation. Default is
org.yamcs.tctm.IssPacketPreprocessor55 which applies ISS conventions.

packetPreprocessorArgs (map)
Optional args of arbitrary complexity to pass to the PacketPreprocessor. Each PacketPreprocessor
may support different options.

5.6 TSE Data Link

Sends telecommands to a configured ../services/global/tse-commander and reads back output as processed
parameters.

5.6.1 Class Name

org.yamcs.tse.TseDataLink56

5.6.2 Configuration Options

host (string)
Required. The host of the TSE Commander.

port (integer)
Required. The TCP port of the TSE Commander.

tcStream (string)
Stream where command instructions are received. Default: tc_tse.

ppStream (string)
Stream where to emit received parameters. Default: pp_tse.

5.7 UDP Parameter Data Link

Listens on a UDP port for datagrams containing Protobuf encoded messages. One datagram is equivalent to
a message of type ParameterData57.

By enabling the json option, this link can also be switched to accepting the JSON equivalent of a Protobuf
ParameterData message.

If more flexibility is needed, this link class can be extended in Java to override the decodeDatagram(byte[]
data, int offset, int length) method. Then you can use custom logic to convert the incoming data-
gram to a message of type ParameterData.

5.7.1 Class Name

org.yamcs.tctm.UdpParameterDataLink58

54 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/PacketPreprocessor.html
55 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/IssPacketPreprocessor.html
56 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tse/TseDataLink.html
57 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/protobuf/Pvalue/ParameterData.html
58 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/UdpParameterDataLink.html

69

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/PacketPreprocessor.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/IssPacketPreprocessor.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tse/TseDataLink.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/protobuf/Pvalue/ParameterData.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/UdpParameterDataLink.html

5.7.2 Configuration Options

stream (string)
Required. The stream where data is emitted

port (integer)
Required. The UDP port to listen on

recordingGroup (string)
Name of the group used for incoming updates. Groups are identifiable in the Archive Browser.

The recording group can also be specified as a property in ParameterData, overriding this configura-
tion setting.

Default: DEFAULT

json (boolean)
If true, decode the incoming message from JSON instead of Protobuf.

Default: false

5.7.3 JSON Example

Add UdpParameterDataLink to the list of data links:

etc/yamcs.instance.yaml

dataLinks:
- name: pp-in
class: org.yamcs.tctm.UdpParameterDataLink
stream: pp_realtime
port: 11016
json: true

Then a Python script like the following updates two parameters at the same time with a single datagram:

import json
import socket
from datetime import datetime, timezone

gentime = datetime.now(timezone.utc).isoformat().replace("+00:00", "Z")

data = json.dumps(
{

"parameter": [
{

"id": {"name": "/myproject/Battery1_Temp"},
"generationTime": gentime,
"engValue": {

"type": "FLOAT",
"floatValue": 123,

},
},
{

"id": {"name": "/myproject/ElapsedSeconds"},
"generationTime": gentime,
"engValue": {

"type": "UINT32",
"uint32Value": 123,

},
},

]
}

).encode()

with socket.socket(socket.AF_INET, socket.SOCK_DGRAM) as s:
s.sendto(data, ("localhost", 11016))

70

5.8 UDP TC Data Link

Sends telecommands via UDP socket. One datagram is equivalent to one command.

5.8.1 Class Name

org.yamcs.tctm.UdpTcDataLink59

5.8.2 Configuration Options

stream (string)
Required. The stream where data is emitted

host (string)
Required. The host of the TC provider

port (integer)
Required. The UDP port to send to

port (integer)
Required. The UDP port to listen on

tcQueueSize (integer)
Limit the size of the queue. Default: unlimited

tcMaxRate (integer)
Ensure that on overage no more than tcMaxRate commands are issued during any given second.
Default: unspecified

commandPostprocessorClassName (string)
Class name of a CommandPostprocessor60 implementation. Default is
org.yamcs.tctm.IssCommandPostprocessor61 which applies ISS conventions.

commandPostprocessorArgs (map)
Optional args of arbitrary complexity to pass to the CommandPostprocessor. Each CommandPostpro-
cessor may support different options.

5.9 UDP TM Data Link

Listens on a UDP port for datagrams containing CCSDS packets. One datagram is equivalent to one packet.

5.9.1 Class Name

org.yamcs.tctm.UdpTmDataLink62

5.9.2 Configuration Options

stream (string)
Required. The stream where data is emitted

59 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/UdpTcDataLink.html
60 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/CommandPostprocessor.html
61 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/IssCommandPostprocessor.html
62 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/UdpTmDataLink.html

71

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/UdpTcDataLink.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/CommandPostprocessor.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/IssCommandPostprocessor.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/UdpTmDataLink.html

port (integer)
Required. The UDP port to listen on

maxLength (integer)
The maximum length of the packets received. If a larger datagram is received, the data will be trun-
cated. Default: 1500 bytes

packetPreprocessorClassName (string)
Class name of a PacketPreprocessor63 implementation. Default is
org.yamcs.tctm.IssPacketPreprocessor64 which applies ISS conventions.

packetPreprocessorArgs (map)
Optional args of arbitrary complexity to pass to the PacketPreprocessor. Each PacketPreprocessor
may support different options.

5.10 CCSDS Frame Processing

This section describes Yamcs support for parts of the following CCSDS specifications:

• TM Space Data Link Protocol CCSDS 132.0-B-365

• AOS Space Data Link Protocol CCSDS 732.0-B-466

• TC Space Data Link Protocol CCSDS 232.0-B-467

• Unified Space Data Link Protocol CCSDS 732.1-B-268

• TC Synchronization and Channel Coding CCSDS 231.0-B-469

• TM Synchronization and Channel Coding CCSDS 131.0-B-470

• Communications Operation Procedure (COP-1) CCSDS 232.1-B-271

• Space Packet Protocol CCSDS 133.0-B-272

• Encapsulation Service CCSDS 133.1-B-373

These specifications are dealing with multiplexing and to a certain extent encoding data for transmission on
a space link.

The document Space Data Link Protocols — Summary of Concept and Rationale74 provides a comprehen-
sive summary of the different protocols and it is recommended to read it before attempting to configure Yamcs
to use these protocols.

5.10.1 Telemetry Frame Processing

The CCSDS specifies how to transport data into three types of frames:

• AOS

• TM

• USLP
63 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/PacketPreprocessor.html
64 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/IssPacketPreprocessor.html
65 https://public.ccsds.org/Pubs/132x0b3.pdf
66 https://public.ccsds.org/Pubs/732x0b4.pdf
67 https://public.ccsds.org/Pubs/232x0b4.pdf
68 https://public.ccsds.org/Pubs/732x1b2.pdf
69 https://public.ccsds.org/Pubs/232x0b4e1c1.pdf
70 https://public.ccsds.org/Pubs/131x0b4.pdf
71 https://public.ccsds.org/Pubs/232x1b2e2c1.pdf
72 https://public.ccsds.org/Pubs/133x0b2e2.pdf
73 https://public.ccsds.org/Pubs/133x1b3e1.pdf
74 https://public.ccsds.org/Pubs/130x2g3.pdf

72

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/PacketPreprocessor.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/IssPacketPreprocessor.html
https://public.ccsds.org/Pubs/132x0b3.pdf
https://public.ccsds.org/Pubs/732x0b4.pdf
https://public.ccsds.org/Pubs/232x0b4.pdf
https://public.ccsds.org/Pubs/732x1b2.pdf
https://public.ccsds.org/Pubs/232x0b4e1c1.pdf
https://public.ccsds.org/Pubs/131x0b4.pdf
https://public.ccsds.org/Pubs/232x1b2e2c1.pdf
https://public.ccsds.org/Pubs/133x0b2e2.pdf
https://public.ccsds.org/Pubs/133x1b3e1.pdf
https://public.ccsds.org/Pubs/130x2g3.pdf

Yamcs supports to a certain extent all three of them. The main support is around the "packet service" - that is
describing how the telemetry packets are extracted from the frames. The implementation is however generic
enough (hopefully) such that it is possible to add additional functionality for processing non-packet data (e.g.
sending video to external application).

The packets are inserted into frames which are sent as part of Virtual Channels (VC). The VCs can have
different priority on-board, for example one VC can be used to transport low volume HK data, while another
one to transport high volume science data.

Note that The USLP and TC frames support a second level of multiplexing called Multiplexer Access Point
(MAP) which allows multiplexing data inside a VC. The MAP service is only supported for TC, not for USLP.

Currently the built-in way to receive frame data inside Yamcs is by using the UdpTmFrameLink data link.
The yamcs-sle project provides an implementation of the Space Link Extension (SLE) which allows receiving
frame data from SLE-enabled Ground Stations (such as those from NASA Deep Space Network or ESA
ESTRACK (European Space Tracking)). The options described below are valid for both link types.

An example of a UDP TM frame link specification is below:

- name: UDP_FRAME_IN
class: org.yamcs.tctm.ccsds.UdpTmFrameLink
args:
port: 10017
rawFrameDecoder:

codec: RS
interleavingDepth: 5
errorCorrectionCapability: 16
derandomize: false

frameType: "AOS"
spacecraftId: 0xAB
frameLength: 512
frameHeaderErrorControlPresent: true
insertZoneLength: 0
errorDetection: CRC16
clcwStream: clcw
goodFrameStream: good_frames
badFrameStream: bad_frames
virtualChannels:

- vcId: 0
ocfPresent: true
service: "PACKET"
maxPacketLength: 2048
packetPreprocessorClassName: org.yamcs.tctm.IssPacketPreprocessor
packetPreprocessorArgs:

[...]
stream: "tm_realtime"

- vcId: 1
ocfPresent: true
service: "PACKET"
maxPacketLength: 2048
stripEncapsulationHeader: true
packetPreprocessorClassName: org.yamcs.tctm.GenericPacketPreprocessor
packetPreprocessorArgs:

[...]
stream: "tm2_realtime"

- vcId: 2
ocfPresent: true
service: "PACKET"
maxPacketLength: 2048
packetPreprocessorClassName: org.yamcs.tctm.IssPacketPreprocessor
stream: "tm_dump"

The following general options are supported:

rawFrameDecoder (map) supported since Yamcs 5.5.7
Decodes raw frame data using an error correction scheme and/or randomization. For the moment only
the Reed-Solomon codec is supported. If this is not set, the frames are considered already decoded.
See below for the options to the Reed-Solomon codec.

frameType (string)

73

Required. One of AOS, TM or USLP. The first 2 bits for AOS/TM and 4 bits for USLP represent the
version number and have to have the value 0, 1 or 12 respectively. If a frame is received that has a
different version, it is discarded (with a warning log message).

derandomize (boolean)
If true, derandomize the frames with the derandomizer as per CCSDS 131.0-B-4. Default: false

spacecraftId (integer)
Required. The expected spacecraft identifier. The spacecraftId is encoded in the frame header. If a
frame with a different identifier is received, it is discarded (with a warning log message).

frameLength (integer)
The expected frame length. This parameter is mandatory for AOS and TM frames and optional for
USLP frames which can have variable length. If a frame is received that does not have this length, it is
discarded (with a warning log message). For USLP frames, if this parameter is specified, the following
two are ignored; Yamcs will use maxFrameLength = minFrameLength = frameLength.

maxFrameLength (integer)
Used for USLP with variable frame length to specify the maximum length of the frame. This parameter
is ignored if the frameLength parameter is also specified.

minFrameLength (integer)
Used for USLP with variable frame length to specify the minimum length of the frame. This parameter
is ignored if the frameLength parameter is also specified.

frameHeaderErrorControlPresent (boolean)
Used only for AOS frames to specify the presence/absence of the 2 bytes Frame Header Error Control.
This can be used to detect and correct errors in parts of the AOS frame headers using a Reed-Solomon
(10,6) code.

insertZoneLength (integer)
The AOS and USLP frames can optionally use an Insert Service to transfer fixed-length data synchro-
nized with the release of the frames. The insert data follows immediately the frame primary header. If
the Insert Service is used, this parameter specifies the length of the insert data. If not used, please
set it to 0 (default). For TM frames this parameter is ignored. Currently Yamcs ignores any data in the
insert zone.

errorDetection (string)
One of NONE, CRC16 or CRC32. Specifies the error detection scheme used. TM and AOS frames
support either NONE or CRC16 while USLP supports NONE, CRC16 or CRC32. If present, the last
2 respectively 4 bytes of the frame will contain an error control field. If the CRC does not match the
computation, the frame will be discarded (with a warning message).

clcwStream (string)
Can be used to specify the name of the stream where the Command Link Control Words (CLCW) will
be sent. The CLCW is the mechanism used by COP-1 to acknowledge uplinked frames. For TM and
USLP frames, there is an OCF flag part of the frame header indicating the presence or not of the
CLCW. For AOS frames it has to be configured with the ocfPresent flag below. If present, the CLCW
is also extracted from idle frames (i.e. frames that are inserted when no data needs to be transmitted
in order to keep the constant bitrate required for downlink).

goodFrameStream (string)
If specified, the good frames will be sent on a stream with that name. The stream will be created if it
does not exist.

badFrameStream (string)
If specified, the bad frames will be sent on a stream with that name. Bad frames are considered as
those that fail decoding for various reasons: length in the header does not match the size of the data
received, frame version does not match, bad CRC, bad spacecraft id, bad vcid.

virtualChannels (map)
Required. Used to specify the Virtual Channel specific configuration.

For each Virtual Channel in the virtualChannels map, the following parameters can be used:

74

vcId (integer)
Required. The configured Virtual Channel identifier.

ocfPresent: (boolean)
Used for AOS frames to indicate that the Virtual Channel uses the Operational Control Field (OCF)
Service to transport the CLCW containing acknowledgments for the uplinked TC frames. For TM and
USLP frames, there is a flag in each frame that indicates the presence or absence of OCF.

service:
Required. This specifies the type of data that is part of the Virtual Channel. One of PACKET, IDLE or
VCA

PACKET:
This is used if the data contains packets - it requires the presence of the first header pointer to
indicate where in the frame the packet starts. Both CCSDS space packets and CCSDS encapsu-
lation packets are supported (even multiplexed on the same virtual channel). The type of packet is
detected based on the first 3 bits of data: 000=CCSDS space packet, 111=encapsulation packets.
Idle CCSDS space packets (having APID = 0x7FF) and idle encapsulation packets (having first
byte = 0x1C) are discarded.

IDLE:
Supported for AOS and USLP to indicate that the Virtual Channel contains only idle frames .
Normally, the AOS and USLP use the Virtual Channel 63 to transmit idle frames and you do not
need to define this virtual channel (in conclusion IDLE is not very useful). The TM frames have a
different mechanism to signal idle frames (first header pointer is 0x7FE).

VCA:
VCA stands for Virtual Channel Access - it is a mechanism for the user to plug a custom handler
for the virtual channel data. The vcaHandlerClassName property has to be defined if this option
is specified (see below).

maxPacketLength:
Required if service=PACKET. Specifies the maximum size of a packet (header included). Valid for
both CCSDS Space Packets and CCSDS encapsulation packets. If the header of a packet indicates a
packet size larger than this value, a warning event is raised and the packet is dropped including all the
data until a new frame containing a packet start.

packetPreprocessorClassName and packetPreprocessorArgs
Required if service=PACKET. Specifies the packet pre-processor and its configuration that will be
used for the packets extracted from this Virtual Channel. See Packet Pre-processor (page 62) for
details.

vcaHandlerClassName:
Required if the service = VCA Specifies the name of the class which handles data for this virtual
channel. The class has to implement VcDownlinkHandler75 interface. Optionally it can implement
Link76 interface to appear as a data link (e.g. in yamcs-web). An example implementation of such class
can be found in the ccsds-frames example project.

Raw Frame Decoder

The options which can be selected under the rawFrameDecoder key are the following:

codec (string)
Required. Specifies the error correction codec to use. Valid values are NONE and RS. None means the
data will not be error corrected (can be still useful if only de-randomization is required). RS means the
Reed-Solomon codec is used and the errorCorrectionCapability and interleavingDepth below can be
used to configure the codec.

interleavingDepth (int)
The interleaving depth specifies the number of RS decoders running in "parallel" for one frame. Each
interleavingDepth'th byte in the frame will be passed to a different decoder. Note however that as of
Yamcs 5.5.7, the data is process sequentially not in parallel. Default: 5

75 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/ccsds/VcDownlinkHandler.html
76 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/Link.html

75

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/ccsds/VcDownlinkHandler.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/Link.html

errorCorrectionCapability (int)
This is either 8 or 16 determining the RS(255, 239) respectively RS(255,223) codec to be used. Default:
16

derandomize (boolean)
If true, the data will be passed through a derandomizer after being decoded. Default: false

5.10.2 Telecommand Frame Processing

Yamcs supports packing telecommand packets into TC Transfer Frames and in addition encapsulating the
frames into Communications Link Transmission Unit (CLTU).

Currently the built-in way to send telecommand frames from Yamcs is by using the UdpTcFrameLink data link.
The yamcs-sle project provides an implementation of the Space Link Extension (SLE) which allows sending
CLTUs to SLE-enabled Ground Stations. The options described below are valid for both link types.

An example of a UDP TC frame link specification is below:

- name: UDP_FRAME_OUT
class: org.yamcs.tctm.ccsds.UdpTcFrameLink
host: localhost
port: 10018
spacecraftId: 0xAB
maxFrameLength: 1024
cltuEncoding: BCH
priorityScheme: FIFO
randomizeCltu: false
virtualChannels:

- vcId: 0
service: "PACKET"
mapId: 1
priority: 1
commandPostprocessorClassName: org.yamcs.tctm.IssCommandPostprocessor
commandPostprocessorArgs:
[...]

stream: "tc_sim"
useCop1: true
clcwStream: "clcw"
initialClcwWait: 3600
cop1T1: 3
cop1TxLimit: 3
slidingWindowWidth: 15
bdAbsolutePriority: false

The following general options are supported:

spacecraftId (integer)
Required. The spacecraftId is encoded in the TC Transfer Frame primary header.

maxFrameLength (integer)
Required. The maximum length of the frames sent over this link. The Virtual Channel can also specify
an option for this but the VC specific maximum frame length has to be smaller or equal than this. Note
that since Yamcs does not support segmentation (i.e. splitting a TC packet over multiple frames), this
value limits effectively the size of the TC packet that can be sent.

priorityScheme (string)
One of FIFO, ABSOLUTE or POLLING_VECTOR. This configures the priority of the different Virtual Chan-
nels. The different schemes are described below.

cltuEncoding (string)
One of BCH, LDPC64, LDPC256, or CUSTOM. If this parameter is present, the TC transfer frames will be
encoded into CLTUs and this parameter configures the code to be used. If this parameter is not present,
the frames will not be encapsulated into CLTUs and the following related parameters are ignored. If the
value is CUSTOM, the CLTU generator class must be specified as indicated below.

76

cltuStartSequence (string)
This parameter can optionally set the CLTU start sequence in hexadecimal if different than the CCSDS
specs.

cltuTailSequence (string)
This parameter can optionally set the CLTU tail sequence in hexadecimal if different than the CCSDS
specs.

randomizeCltu (boolean)
Used if cltuEncoding is BCH or CUSTOM to enable/disable the randomization. For LDPC encoding,
randomization is always on. Note that as per issue 4 of CCSDS 231.0 (TC Synchronization and Chan-
nel Coding), the randomization is done before the encoding when BCH is enabled whereas if LDPC
encoding is enabled, the randomization is done after the encoding. This has been changed in Yamcs
version 5.5.4 - in versions 5.5.3 and earlier the randomization was always applied before the encoding
(as per issue 3 of the CCSDS standard). If CUSTOM CLTU encoding is used, the custom encoder is
responsible for the randomization - it can use this option or its own separate option for configuration.

skipRandomizationForVcs (list of integers) added in Yamcs 5.5.6
If randomizeCltu is true, this option can define a list of virtual channels for which randomization is
not performed. This is not as per CCSDS standard which specifies that the randomization is en-
abled/disabled at the physical channel level.

cltuGeneratorClassName (string)
Required if cltuEncoding is CUSTOM. Specifies the name of the class which constructs the CLTU
from the frame, if a custom format is required.

cltuGeneratorArgs
Optional if cltuEncoding is CUSTOM, ignored otherwise. Arguments to pass to the constructor for the
CLTU generator class.

virtualChannels (map)
Required. Used to specify the Virtual Channel specific configuration.

errorDetection (string)
One of NONE or CRC16. Specifies the error detection scheme used. If present, the last 2 bytes of the
frame will contain an error control field. Default: CRC16

frameMaxRate (double)
maximum number of command frames to send per second. This option is specific to the UDP TC link.

For each Virtual Channel in the virtualChannels map, the following parameters can be used:

vcId (integer)
Required. The Virtual Channel identifier to be used in the frames. You can define multiple entries in
the map with the same vcId, if the data is coming from different streams.

service (string)
Currently the only supported option is PACKET which is also the default.

commandPostprocessorClassName (string) and commandPostprocessorArgs (string)
Required if service=PACKET. Specifies the command post-processor and its configuration. See Com-
mand Post-Processor (page 66) for details.

stream (string)
Required. The stream on which the commands are received.

multiplePacketsPerFrame (boolean)
If set to true (default), Yamcs sends multiple command packets in one frame if possible (i.e. if the
accumulated size fits within the maximum frame size and the commands are available when a frame
has to be sent).

useCop1 (boolean)
If set to true, the COP-1 protocol is used for acknowledgment of TC frames.

77

clcwStream (string)
If COP-1 is enabled, this parameter configures the stream where the Command Link Control Words
(CLCW) is read from.

initialClcwWait (integer)
If COP-1 is enabled, this specifies how many seconds to wait for the first CLCW.

cop1T1 (integer)
If COP-1 is enabled, this specifies the value in seconds for the timeout associated to command ac-
knowledgments. If the command frame is not acknowledged within that time, it will be retransmitted.
The default value is 3 seconds.

cop1TxLimit (integer)
If COP-1 is enabled, this specifies the number of retransmissions for each un-acknowledged frame
before suspending operations.

slidingWindowWidth (integer)
If COP-1 is enabled, this specifies the default value for the FOP_SLIDING_WINDOW_WIDTH (K).
Default: 10

bdAbsolutePriority (false)
If COP-1 is enabled, this specifies that the BD frames have absolute priority over normal AD frames.
This means that if there are a number of AD frames ready to be uplinked and a TC with cop1Bypass
flag is received (see below for an explanation of this flag), it will pass in front of the queue so ti will be
the first frame uplinked (once the multiplexer decides to uplink frames from this Virtual Channel). This
flag only applies when the COP-1 state is active, if the COP-1 synchronization has not taken place, the
BD frames are uplinked anyway (because all AD frames are waiting).

tcQueueSize (integer)
This is used if COP-1 is not enabled, to determine the size of the command queue. Note that this is
number of commands (not frames!). If the queue is full, the new commands will be rejected. Commands
are taken from the queue by the multiplexer, according to the priority scheme defined below. Default:
10.

errorDetection (string)
One of NONE or CRC16. Specifies the error detection scheme used for the virtual channel, overriding
the setting at link level. This is not according to the CCSDS standard which specifies the frame error
detection shall be configured at physical channel level. If not specified (default), the setting at the link
level will be used.

mapId (integer)
If specified and positive, use the MAP service. Supported for TC frames only (not for USLP). Each
frame will contain an extra byte after the primary header. The first two bits of the byte are set to 1 (i.e.
unsegmented) and the last 6 bits are the map id. The default id is the one specified in this configuration.
It can be overridden in the MDB or via command attributes. The map id has to be between 0 and 15.
Default: -1 (MAP service not used)

5.10.2.1 Priority Schemes

The multiplexing of command frames from the different Virtual Channels is done according to the defined
priority scheme. The multiplexer is triggered by the availability of the uplink - when a command frame is to be
uplinked it has to decide from which Virtual Channel it will release it.

FIFO means that the first frame received across all virtual channels will be the first one sent.

ABSOLUTE means that the frames will be sent according to the priority set on each Virtual Channel (set by the
priority parameter). This means that as long as a high priority VC has commands to be sent, the lower
priority VC will not release any command.

POLLING_VECTOR means that a polling vector will be built and each Virtual Channel will have the number of
entries in the vector according to its priority. The multiplexing algorithm will cycle through the vector releasing
the first command available. For example if there are two VCs VC1 with priority 2 and VC2 with priority 4,
the polling vector will look like: [VC1, VC1, VC2, VC2, VC2, VC2]. This means that if both VCs have a high

78

number of frames to be sent, the multiplexer will send 2 frames from VC1 followed by 4 from VC2 and then
again. If however VC2 has only one frame to be sent, it will lose its other three slots for that cycle and the
multiplexer will go back to sending two frames from VC1.

5.10.2.2 COP-1 Support

COP-1 is the protocol specified in CCSDS 232.1-B-277 for ensuring complete and correct transmission of TC
frames. The protocol is using a sliding window principle based on the frame counter assigned by Yamcs to
each uplinked frame.

The mechanism through which the on-board system reports the reception of commands is called Command
Link Control Word (CLCW). This is a 4 byte word which is sent regularly by the on-board system to ground
and contains the value of the latest received command counter and a few status bits. In Yamcs, we expect
the CLCW to be made available on a stream (configured with the clcwStream parameter). The TM frame
decoding can place the content of the OCF onto this stream. If the CLCW is sent as part of a regular TM
packet, a StreamSQL statement like the following can be used:

create stream clcw (clcw int)
insert into clcw select extract_int(packet, 12) as clcw from tm_realtime where extract_short(packet, 0) =␣
→˓2080

The first statement creates the stream, and the second inserts 4 bytes extracted from offset 12 from all
telemetry packets having the first 2 bytes equal with 2080.

If the initialClcwWait parameter is positive, at the link startup, Yamcs waits for that number of seconds for
a CLCW to be received; once it is received, Yamcs will set the value of the ground counter (called vS in the
spec) to the on-board counter value (called nR in the spec) received in the CLCW. That will ensure that the
next command frame sent by Yamcs will contain the counter value expected by the on-board system.

If the initialClcwWait parameter is not positive (the value will be ignored) or if no CLCW has been received
within the specified time, the synchronization has to be initiated manually via the user interface. This can be
done either waiting again for a new CLCW, setting manually a value for vS (this requires the operator to know
somehow what value the on-board system is expecting) or sending a command to the on-board system to
force the on-board counter to the same value like the ground.

If the ground and on-board systems are not synchronized and a command is received, there are two possible
outcomes:

• if the initialization process has been started (manually or at the link startup with the initialClcwWait
parameter), the command will be put in a wait queue to be sent once the Synchronization took place.

• if the initialization process has not been started or has failed, the command will be rejected straight
away with the NACK on the Sent acknowledgment.

AD, BD and BC frames

The CCSDS Standard distinguishes between three types of TC frames (the type is encoded in some bits in
the frame primary header):

• AD frames contain normal telecommands and they are subjected to COP-1 transmission verification.

• BD frames contain normal telecommands but they are not subjected to COP-1 transmission verification.

• BC frames contain control commands generated by the ground COP-1 state machine and they are
used to control the on-board state machine.

To send BD frames with Yamcs, you can use an attribute on the command called cop1Bypass. If the link
finds this attribute set to true, it will send the command in a BD frame, bypassing the COP-1 verification. The
BC frames are sent only by the COP-1 state machine and it is not possible to send them from the user.

77 https://public.ccsds.org/Pubs/232x1b2e2c1.pdf

79

https://public.ccsds.org/Pubs/232x1b2e2c1.pdf

The user interface allows also to deactivate the COP-1 and the user can opt for sending all the commands
as AD frames or BD frames regardless of the cop1Bypass attribute.

5.11 Yamcs Cascading Link

The Yamcs Cascading Link functions as a client to an upstream Yamcs server. It provides the following data:

• TM packet reception in realtime and archive

• Parameter reception in realtime

• Event reception in realtime

• Command sending and Command History provision

The link is configured with one entry in the links section of the etc/yamcs.instance.yaml configuration file.

5.11.1 Class Name

org.yamcs.cascading.YamcsLink78

In the examples/cascading directory of the main yamcs repository there is a configuration with two Yamcs
instances upstream and downstream demonstrating the cascading functionality.

5.11.2 Configuration Options

upstreamName (string)
Required. The name of the upstream Yamcs server. The name is used on the local Yamcs for the
command history entries and for the system (/yamcs) parameters.

yamcsUrl (string)
Required. The URL to connect to the upstream Yamcs server; The URL has to include http or https.

username (string)
Username to connect to the upstream Yamcs server (if authentication is enabled); has to be set together
with password.

password (string)
Password to connect to the upstream Yamcs server (if authentication is enabled); has to be set together
with username.

upstreamInstance (string)
Required. The instance of Yamcs on the upstream server.

verifyTls (boolean)
If the connection is over TLS (when yamcsUrl starts with https), this option can enable/disable the
verification of the server certificate against local accepted CA list. Default: true

upstreamProcessor (string)
The processor to connect to on the upstream Yamcs server. Default: realtime

tm (boolean)
Subscribe telemetry containers (packets). The list of containers (packets) has to be specified using the
containers option. Default: true

containers (list of strings)
Required if tm is true. The list of containers(packets) to subscribe to. The list has to contain fully
qualified names of containers.

78 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/cascading/YamcsLink.html

80

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/cascading/YamcsLink.html

At this moment both the local (downstream) MDB and the upstream MDB have to contain definitions
for the containers specified in this list.

However, the local MDB can contain a more refined version.

For example the upstream MDB may define the container with just the header or a few parameters
whereas the local MDB may define it in full and additionally other derived containers.

tmRealtimeStream (string)
Stream to which the TM packets will be sent. Default: tm_realtime.

tmArchive (boolean)
Enables TM archival. Default: true.

tmArchiveStream (string)
Stream to which the TM packets will be archived. Default: tm_dump.

gapFillingInterval (integer)
Number of seconds between each archive gap filling attempt. Default: 300.

pp (boolean)
Subscribe parameters (pp stands for "processed parameters"). The list of parameters has to be speci-
fied using the parameters option. Default: true

parameters (list of strings)
Required if pp is true. The list of parameters has to subscribe to. The list should contain fully qualified
name of parameters which have to be present both in the local MDB and in the remote(upstream) MDB.
Wildcards using glob patterns can be used.

The requirement to have the parameters in both MDBs is a a current limitation due to the fact that we
do not add parameters dynamically to the MDB. One exception is the Yamcs system parameters (those
in the /yamcs namespace) - these do not have to be present in the local MDB, they are created on the
fly.

The /yamcs system parameters will be renamed such that /yamcs/a/b/c/parameter_name is saved
in the local archive as /yamcs/upstreamName_a/b/c/parameter_name.

ppRealtimeStream (string)
Stream to which the parameter packets will be sent. Default: pp_realtime.

tc (boolean)
Allow to send TC and subscribe to command history.

All the command history entries received from the upstream server will be renamed to the shape
yamcs<upstreamName>_OriginalEntryName.

Exception make those added in the keepUpstreamAcks configuration.

Default: true

keepUpstreamAcks (list of strings)
List of command acknowledgments names received from the upstream server to keep unmodified.

Default is "ccsds-seqcount" - this key is used by one of the CCSDS links to set the sequence count as-
sociated to the command and required in the simulation configuration to be able to verify the command
execution (because the sequence count is reported in returning telemetry containing the command
execution status).

event (boolean)
Subscribe to realtime events. The events on the upstream server will be mirrored to the local server.

Default: true

eventRealtimeStream (string)
Stream to which the events will be sent. Default: events_realtime.

connectionAttempts (integer)
How many times to attempt reconnection if the connection fails. Reconnection will only be attempted
once if the authentication fails.

81

Link disable/enable is required to reattempt the connection once this number has passed.

reconnectionDelay (integer)
If the connection fails or breaks, the time (in milliseconds) to wait before reconnection.

commandMapping (list of CommandMapData)
This option is used to configure the mapping between the downstream command names and the up-
stream command names. Each entry in the list can have the following structure:

type (string)
Required. Can take one of the values:

• DIRECT: maps all the arguments in the downstream command directly onto the arguments
in the upstream commands. The command names can be changed using the local and
upstream configuration options below.

• EMBEDDED_BINARY: encodes the downstream command to binary and sets the binary
as an argument in the upstream command. The argument configuration option below
is the name of the argument of the downstream command.

If a post-processor is defined (see below) the binary is as generated by the post-
processor.

• DEFAULT: this is the default behavior before Yamcs 5.8.7; it assumes that upstream and down-
stream MDBs have the same commands.

local (string)
Required if type is DIRECT or EMBEDDED_BINARY Downstream path to be mapped. Can be
either a path (ending with /) to a downstream subsystem or a specific downstream command.

upstream (string)
Required if type is DIRECT or EMBEDDED_BINARY Upstream path to be mapped. If the type
is DIRECT and local is a path, then this can also be a path to an upstream subsystem. If local
and upstream are paths, then the upstream command is found by replacing the path specified in
local with the path specified in upstream

argument (string)
Required if type is EMBEDDED_BINARY. Argument in the upstream command that will be used
for the embedded binary downstream command.

The list of commandMapping is checked in order - the first entry which matches the local entry will be
used.

If no entry matches the sent command, the command will fail.

failCommandIfNoMappingMatches (boolean)
Since Yamcs 5.9.7. If no mapping was found for the local command, setting this option to true will
cause immediately the command to fail. If set to false (default) the command will not fail immediately
and the link manager will try to send it on another link (if available).

commandPostprocessorClassName (string)
The class name for the command post-processor. The post-processor is used for the embedded binary
commands.

commandPostprocessorClassName (map)
The arguments to use for initializing the post-processor.

82

6. Processors

Yamcs processes TM/TC according to Mission Database definitions. Yamcs supports concurrent processing
of parallel streams; one processing context is called Processor. Processors have clients that receive TM and
send TC. Typically one Yamcs instance contains one realtime processor processing data coming in realtime
and on-request replay processors, processing data from the archive. Internally, Yamcs creates a replay
processors for tasks like filling up the Parameter Archive.

Each processor is composed of a set of services with varying functionality.

6.1 TM Packet Processing

This section describes how Yamcs processes the TM packets according to the MDB definitions. Note that
when Yamcs receives a packet, it sends it first to a Packet Pre-processor (page 62) which assigns it a gen-
eration time. The generation time is saved in the archive and also used as generation time for all parameters
extracted from that packet.

The figure below provides an overview of the steps involved, followed by a more detailed description of each
step.

83

1. Container identification

84

When Yamcs has to process a TM packet it has first to know which MDB container it corresponds to. For
realtime packets this is done based on the stream on which the packet is coming. Each stream has an at-
tribute rootContainer (defined in streamConfig -> tm in etc/yamcs.instance.yaml) which configures
the container used for all packets coming on that stream. For historical reasons that attribute is optional; if not
configured Yamcs will take the first container (when traversing the MDB tree) having no parent. For archive
packets, that information is stored in the archive the first time the packet is received.

The processing returns to this step when processing sub-containers or inherited containers (see below).

2. Entry selection

Once a packet is matched to a container, Yamcs can proceed to extract the container entries. There are
cases when, in order to improve the performance, Yamcs performs a partial retrieval - only a subset of the
entries are processed.

This for example is done as part of the XtceTmRecorder service when Yamcs does not want to extract
parameters but only to identify the packet to its lowest sub-container; it is also done when performing a reply
for the purpose of extracting a parameter or a set of parameters. The property that configures this behavior
is config -> subscribeAll in the processor configuration in etc/processor.yaml. If the property is set
to false, then only the parameter subscribed (and the dependent parameters) will be extracted.

3. Entry processing

A container has different types of entries:

• parameters - for these the processing continues with the steps 3-6 below.

• sub-containers - a new container processing context (bit offset starting from 0!) is created and the
processing continues from step 1.

• array parameters (not shown in the figure) - these have their size either preset in the MDB or given by
another parameter which has already been extracted from the packet. Yamcs will loop and extract the
necessary number of array elements according to their data types in the steps 3-6 below. Note that
there cannot be gaps between the elements of the array.

• aggregate parameters (not shown in the figure) - are parameters containing multiple members (like a
struct in C). For each member of the aggregate Yamcs will extract the aggregate member according to
its data type. As for the array elements, there can be no gap between aggregate members.

• indirect parameters (not shown in the figure) - are placeholders for other parameters - the exact param-
eter that will be extracted is determined by the value of another parameter proceeding it in the packet.
Typically there is an id followed by some data, the data represents one parameter value and the id tells
which parameter exactly the data represents.

For each entry, the MDB defines the position (in bits) in the packet of the start of the entry. This can be
specified either absolute from the beginning of the packet or relative to the previous entry. Note that XTCE
allows positions relative to the end of the packet but this is not supported by Yamcs.

4. Binary value delimitation

The start of the parameter in the packet is given by the offset in the container entry definition as explained
above. The size in bits is given by the Data Encoding (or element/member Data Encoding for the ar-
rays/aggregates). Some data encodings can be fixed in size (e.g. a 32 bit floating point number or a 4
bits integer), some of them can be variable size - typical examples are strings or binary. Finally there can be
an user defined algorithm which can determine the size and also extract the raw value as explained below.
The data decoding algorithms have to be implemented in Java (Javascript and Python are not supported)

5. Binary to raw value

Part of the data type processing is also extracting the raw value from the packet. The raw value is one of
the usual types: boolean, signed/unsigned integer (max 64 bits), float (32 or 64 bits), string, binary, array or
aggregate. Note that the binary type is an array of bytes but it is not an array parameter type. Using a binary
parameter types instead of an array of 8 bit integers is more efficient and thus preferred in most cases.

6. Raw to engineering value

85

Next step in the processing is the conversion of the raw value to the engineering value. This is done using
the calibration rule (if any) part of the Parameter Type MDB definition. A special case is an enumerated
parameter type - the engineering value of such parameter is a special type called EnumeratedValue which
has a dual integer/string representation. Other special type is an absolute time - the engineering value is a
timestamp (resolution is millisecond).

After the engineering value has been computed, Yamcs defers further processing until all entries have been
extracted.

7. Container inheritance

After all entries from one container have been extracted, Yamcs proceeds to check if there is any inherited
container which matches the condition. If there is, the container is processed starting with step 1.

Note that the bit offset is not re-initialized to 0 as for sub-containers. It is considered that the inherited
container contains the entries of the parent (already extracted) and thus any absolute position is counted
from the beginning of the original packet.

8. Validity check

After all entries from the root container and all inherited containers to the deepest level have been extracted,
Yamcs proceeds to perform checks on the extracted parameters. The first is checking against the validity
range (if any) - if the check fails the parameter is declared as invalid and monitoring limits in the next step are
not checked (no alarm raised either). If a parameter is invalid, it usually means that something went wrong
with the transmission of the data.

9. Monitoring check

If a parameter has passed the validity checks, the monitoring checks are performed. This means check-
ing a numeric parameter as being inside certain limits or checking an enumerated parameter having certain
values. There is no monitoring check for boolean, string, binary, aggregate or array parameters. The mon-
itoring checks can use contextual information - that means the limits checked depend on other parameters.
The monitoring checks can be disabled by setting config -> alarm -> parameterCheck to false in etc/
processor.yaml.

10. Alarm raising

If the alarm server is enabled (config -> alarm -> parameterServer in etc/processor.yaml), alarm
will be raised for all parameters which are determined by the previous step to be out of limits.

11. Algorithms

If there is any algorithm taking as input one of the parameters extracted, the value is provided to the algorithm.
Depending on the algorithm definition, the algorithm is also run possibly producing more parameters. These
parameters are also passed through the monitoring checks and alarms in step 9 and 10 (if they have defined
limits).

12. Data distribution

Finally the list of all parameter values (those extracted from packet and those computed by algorithms) are
distributed to all clients (displays, yamcs-web, etc).

6.2 Command Processing

This section provides a detailed description of how Yamcs processes commands based on MDB definitions,
following a series of steps as outlined in the diagram below.

The figure below provides an overview of the steps involved, followed by a more detailed description of each
step.

86

87

1. Command has container? When a command is received via API, the first step is to determine whether
the command includes a container. The allowContainerlessCommands processor option is required for the
command to be allowed without a container.

If the command has a container, proceed to step 2, where the parameters used for container inheritance are
generated.

2. Generate parameters

XTCE defines two methods for command inheritance conditions: using parameter conditions (this step) and
argument assignments (step 3). P

Parameter inheritance resembles telemetry, where conditions are based on parameter comparisons, allowing
only equality conditions (as opposed to more general boolean conditions in TM inheritance).

An example can be seen in the CCSDS green book79

Note that only equality conditions are allowed (whereas in TM inheritance general boolean conditions may
be used).

Yamcs will generate some parameter values according to the inheritance condition. The parameters may be
used later in building the binary packet. Note that other than in the command building the value of these
parameters are not published anywhere. The parameter generated are with both raw and engineering value.

3. Collect inherited arguments

The next step is to collect the arguments from all the ArgumentAssignments part of the inheritance conditions.
This is similar with step 2.

4. Collect and check all arguments

In this step, all arguments — whether received from the user (via the API), inherited or from the default values
— are gathered. All arguments are checked for validity. The value that is collected is the engineering value.
The conversion to raw value will be performed only if the command has a container in step 8 below.

5. Command has container?

If the command has a container associated, the process moves to step 6, where the binary packet starts to
being built. If not, the process skips directly to step 13 for verification.

6. For each entry in container

For commands with containers, each entry within the container is processed and inserted into the binary
packet. The processing starts from the root container. The type of entry determines the next steps in the
flow.

7. Entry Type

Here, the type of entry within the container is determined:

If the entry is an argument, the flow continues to step 8, where the argument is converted from engineering
units to raw values. If the entry has a fixed value, the process moves to step 11, where the fixed value binary
is written to the packet. The fixed values are specified in binary, they do not need conversion. If the entry is
a parameter, the flow proceeds to step 10 to convert the parameter to binary.

8. Engineering to raw

For argument entries, the first step is to convert the engineering value to raw value. This may involve a
calibration step.

9. Argument Raw to binary

The raw value is converted to a binary value according to the data encoding, possibly using an algorithm.

10. Parameter Raw to binary

Similarly, for parameter entries, the raw values are converted into binary format according to their data encod-
ing. The parameter values used here are in priority those generated at step 2, or collected from the current

79 https://github.com/yamcs/yamcs/blob/master/yamcs-core/src/test/resources/xtce/ccsds-green-book.xml

88

https://github.com/yamcs/yamcs/blob/master/yamcs-core/src/test/resources/xtce/ccsds-green-book.xml

values in the processor (from incoming TM). If no value is found for a parameter, an exception is thrown and
the command processing stops.

11. Write entry binary to the packet

The converted binary values are written into the binary packet according to their absolute or relative position.

12. Inherited containers

The steps 6-11 are repeated by traversing down the tree from the root container to the container associated
to the command sent by the user, converting and inserting all entries.

At this stage the command is built, ready to be sent. Yamcs will perform a few permissions checks: users
with the CommandOptions system privilege are allowed to add different attributes to the command as well as
disable transmission constraints and verifiers. Other users attempting to do that will be rejected.

The API allows to issue a command with an option dry_run=True, case in which the processing will stop here
and the prepared command including the binary and the collected argument values will be returned to the
API user.

13. Queue Command

At this step the command is inserted into the command queue and also into the Command History (this is
the 'Q' ack in the command history). The queue where the command is inserted is determined by probing
all the configures queues in order for these criteria: - is the user allowed to enter commands in that queue -
is the command significance level appropriate for the queue - is the command qualified name matching the
patterns specified by the queue. This condition will satisfy if the queue has no pattern.

If no queue matches the criteria, the last default queue will be used. Depending on the state of the selected
queue, the following will happen:

• If the selected queue is in state DISABLED, the command processing is immediately terminated.

• If the selected queue is in state BLOCKED, the command processing is suspended waiting for the
queue to be enabled (or disabled and then the processing is terminated).

• If the selected queue is in state ENABLED, then the processing continues with the next step.

14. Transmission Constraints check

If the command has transmission constraints (and have not been disabled in the API request), the con-
strains will be checked possibly waiting a configured interval. The constraints typically involve checking some
telemetry parameters. If no delay has been specified, the current value of the parameters are received from
the processor cache and if the check fails, the command is failed. If the delay has been specified in the
transmission constraint, the parameter is checked (if found in the cache) and if the check fails, a subscription
will be created to the incoming parameters.

If a successful check can be performed in the configured delay interval for all the constraints, then the com-
mand is released from the queue.

Just before releasing the command from the queue, if the command has verifiers (and the verifiers have not
been disabled in the API request), the verifiers are started.

15. Release Command

This step usually involves releasing the command into a stream (it corresponds to the 'R' ack in the command
history). Note that the command releaser could be changed by the user in the processor.yaml. Here we
describe what the default StreamTcCommandReleaser does.

There maybe multiple streams where the command can be released. The instance configuration contains a
list of TC streams (in the streamConfig section) each stream with a list of TC patterns specified. In addition,
the user may specify via the API a particular stream where the command should be released. The streams
are checked in order and the first stream that satisfies both conditions will be used.

Finally, some services may insert themselves in the release list in front of the regular streams configured in
the instance configuration. For example the Yamcs Gateway will do that to ensure that certain commands
that it declare reach the nodes. Generally any component in Yamcs may define a command in MDB and add
itself in the release list to make sure it receives that command.

89

16. Send Command

If the command has been released into one of the regular streams, it ends up with the Link Manager. The
Link Manager is the component that controls all the links declared in the instance configuration. Based on the
tcStream property of each link, it has for each stream an ordered (the order is given by the link configuration)
list of links that can send command from that stream.

Once the Link Manager receives the command on a stream, it sequentially considers the enabled links
associated with that stream. It attempts to send the command on each link in the order specified by the link
configuration. Each link can either:

1. decline sending the command passing it to the next link.

2. attempt to send the command and in this case the Link Manager will not attempt to use another link.

If all the links have declined the offer to send the command (or were disabled), the Link Manager will fail the
command with the error "no link available".

Once a link has accepted to send the command, it is responsible to update the command hisotry with the
Sent ('S') ack. If it failed to send the command it is also responsible for completing the command with failure.

17. Command Verification

As mentioned above, before the command has been released from the stream, all the verifiers are started.
The command verifiers usually check for certain conditions in telemetry and populate the command history
accordingly. Each verifier can at any time declare the command completion (either successfully or with failure)
case in which all other running verifiers are immediately aborted. Similarly, the verifiers monitor the command
history for command completion events generated by other sources (for example the link failing the command
if it cannot send it) and they immediately abort in case the command has bene completed.

Note that Yamcs does not enforce strict handling of command completion. For example, while a verifier may
declare a command as failed, another component (such as a link) can later mark the same command as
successful, updating the specific attribute in the Command History (which is a table in the database).

6.3 Alarms

This section describes the alarm handling in Yamcs.

There are two types of alarms:

• Parameter Alarms: These are triggered when a monitored parameter goes out of limits (as defined
in the MDB).

• Event Alarms: These are raised for events that have severity other than INFO.

Both types of alarms can be enabled/disabled in processor.yaml

Alarm States

Alarms in Yamcs follow a lifecycle inspired from the standard ISA-18.2 ("Management of Alarm Systems for
the Process Industries"). The figure below presents a state diagram for the alarm handling process:

90

The "Process" in the diagram refers to the state of the Parameter or the Event.

• for Parameters, ProcessOK means that the latest known value of the parameter is wihitn limits or
that the monitoring has been disabled.

• for Events, ProcessOK means that an event with the same (source, type) and severity INFO has
been received.

RTN means Return to Normal.

** Latching and Auto-acknowlegment - Latching Alarms require an explicit action from the operator to clear,
even if the alarm has been acknowledged and the parameter returns to normal. - Auto-acknowlegment means
that the alarm clears itself as soon as the parameter returns to normal.

Currently all alarms in Yamcs have these flags disabled, meaning that an alarm clears if the operator has
acknowledged it and the parameter returned to normal. Allowing configuring these flags probably require
extending the XTCE MDB and may be done in the future (if interest from users exists).

91

6.4 Processor Configuration

The configuration of the different processor types can be found in etc/processor.yaml. The file defines
a map whose keys are the processor types. The type is used to define a specific configuration used when
creating the processor. In addition to its type, each processor has a unique name specified at the moment of
creation.

The Yamcs processors are created in various ways:

• at startup by the Processor Creator Service (page 119). This is how typically the realtime processor is
started. Note that here "realtime" is both the type and the name of the processor.

• by asking for archive data via the API with dataSource = replay. This will create a processor of type
ArchiveRetrieval.

• the Parameter Archive Service (page 113) creates regularly processors of type "ParameterArchive" to
build up the parameter archive.

• new processors of any type can be created via API. Yamcs Studio and Yamcs Web make use of this
functionality to perform replays of data from the archive and they create processors of type "Archive".

Note that the types Archive, ParameterArchive and ArchiveRetrieval are often hardcoded in the ser-
vices that use those processor types so it is advisable not to change them in the etc/processor.yaml. The
user can define additional processor types for implementing custom functionality.

One current restriction is that all instances share the same processor types. It is not possible for example
that the ParameterArchive processor type behaves differently in two different instances of the same Yamcs
server.

Example of the realtime processor type configuration:

realtime:
services:
- class: org.yamcs.StreamTmPacketProvider
...

config:
subscribeAll: true
recordInitialValues: true
recordInitialValues: true
persistParameters: true
maxTcSize: 4096

alarm:
parameterCheck: true
parameterServer: enabled
eventServer: enabled
eventAlarmMinViolations: 1
loadDays: 30

tmProcessor:
ignoreOutOfContainerEntries: false
expirationTolerance: 1.9

6.4.1 Options

services (list)
A list of services that are started together with the processor. The list is similar with the list of services
used in the instance definitions. The reason is that originally (Yamcs v1) there were no instances but
only processors and the data links were connected directly to them. The different available services
are described in the subsequent chapters after this one.

The other options are under the config key:

subscribeAll (boolean)
If true, all the services that provide parameters will provide all parameters starting at the processor
creation. If set to false, the parameter are requested (subscribed) only when the external user asks for

92

them (for example when opening a display, Yamcs Studio will subscribe to all parameters that are in
the display). One service which can benefit of this is the XTCE TM processor: sometimes it is possible
to extract only a selected list of parameters from packets and skip altogether the packets for which no
parameter is requested. The advantage is that there is less work to perform; the disadvantage is that
no value is available when subscribing a parameter for the first time (e.g. when opening a display for
the first time, there will be no value shown until a packet containing the parameters on the display will
have arrived).

The providers are free to ignore this option and to provide more parameters than subscribed. This is
for example the case for the XTCE TM processor when extracting parameters from a packet where the
position of the entries is not absolute but relative to a previous entry. In this case the only way to extract
a parameter in the middle or end of the packet is to extract all the parameters appearing in front.

recordInitialValues
The Mission database can contain initial (default) values for parameters. Enabling this option will cause
an archive entry to be created at processor start with the values for all these parameters.

recordLocalValues
Local parameters are those known inside Yamcs and not provided by an external system. They are
set by users via API calls. This option allows to record the values for these parameters each time they
change.

maxTcSize (integer)
The maximum size of a telecommand packet. This value will set the maximum value regardless of
the command definition in the Mission Database. There can be commands which have variable size
arguments that do not specify a maximum size; this option will practically limit those cases to an overall
maximum.

subscribeContainerArchivePartitions (boolean)
If set to true (default) the containers declared to be used as archive partition are subscribed by default
in the processor. Otherwise the containers are only subscribed when a user subscribes to them or
to a parameter contained in them. If alarms are enabled, the subscription to the parameters that can
trigger alarms will also cause some container subscriptions. The only reason to switch this option off
is for improving the performance when doing a archive retrieval that only extracts a few parameters. It
is thus advisable to only configure it for the ArchiveRetrieval processor type. Note: the statistics shown
on the yamcs-web instance home page contain the containers subscribed inside the currently selected
processor. If no container is subscribed, only the root containers will be shown.

persistParameters (boolean)
If set to true, save the value of the parameters when the processor is closed and restore them when a
processor with the same name starts. Only the parameters with the persistence flag set will be saved.
By default in XTCE all parameters are set as persistent whereas in the spreadsheet the persistance
has to be enabled by specifying the "p" flag. This is typically set to true for the realtime processor such
that the values of the parameters are saved when Yamcs is shut down and restored when Yamcs starts
up again. Default: false

6.4.2 Alarm options

These options are defined under config -> alarm.

parameterCheck (boolean)
If set to true, the parameters will be checked against the Mission Database defined limits. The users
will receive the limit information as part of the parameter status. For example Yamcs Studio displays
these parameters with a red or yellow border, depending on the severity of the limit. If set to false the
limits will be ignored and all parameters will have the status unmonitored (equivalent with having no
limit defined in the Mission Database).

parameterServer (string)
Can be enabled or disabled. If enabled, an alarm server managing the alarm status of parameters will
be started as part of the processor. This option requires the parameterCheck to be enabled. If disabled

93

but the parameterCheck set to true, the parameters will still have their out of limit status associated but
there will be no alarms generated.

eventServer (string)
Can be enabled or disabled. If enabled, an alarm server managing the alarm status of events will be
started as part of the processor. This works similarly with the alarms for parameters - the severity of the
event is used to derive the severity of the alarm. However because the events do not have a definition
similar with the parameters in the Mission Database, the event source/type is used as a key for the
alarm. That means that if a second event with the same source,type is being received as one that has
already triggered an alarm, it is considered another occurrence of the same alarm.

eventAlarmMinViolations (integer)
The number of occurrences of a specific event (identified by its source and type) required to raise an
alarm. By default it is 1. Note that the parameters do not have this setting because it is part of the
Mission Database definition.

loadDays (float)
Specifies the number of days of past alarms to load at Yamcs startup. If the value is zero or negative,
no alarms will be loaded. This option has been introduced in Yamcs version 5.9.9 and 10.1.2. In earlier
versions, triggered alarms were not reloaded into the alarm server during Yamcs startup. Default: 30

6.4.3 TM (container) processing options

These options are defined under the config -> tmProcessor.

ignoreOutOfContainerEntries (boolean)
If set to false (default), when processing a TM packet, parameters whose position falls outside of the
packet, will generate a warning. This option can be used to turn off that warning. Usually it is a sign of
an ill-defined Mission Database and it is better to fix the Mission Database than setting this option.

expirationTolerance (double)
The Mission Database can define an expected rate in stream for packets (containers). This signifies
how often a packet is expected to be sent by the remote system. The rate in stream property will
cause Yamcs to set an expiration time for the parameters extracted from that packet. The expiration of
parameters is used to warn the operators that they are potentially looking at stale data in the displays.

Yamcs will compute the expiration time as the rate in stream defined in the Mission Database multiplied
by this configuration option. The tolerance is needed in order to avoid generating false expiration
warnings.

maxArraySize (integer)
The maximum size of arrays extracted from TM packets. The arrays can be dynamically sized (meaning
the size is given by a parameter in the packet) and this option configures the maximum size allowed.
Default: 10000.

6.5 Alarm Reporter

Generates events for changes in the alarm state of any parameter on the specific processor. Note that this is
independent from the actual alarm checking.

6.5.1 Class Name

org.yamcs.alarms.AlarmReporter80

80 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/alarms/AlarmReporter.html

94

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/alarms/AlarmReporter.html

6.5.2 Configuration

This service is defined in etc/processor.yaml. Example:

realtime:
services:
- class: org.yamcs.alarms.AlarmReporter

6.5.3 Configuration Options

source (string)
The source name of the generated events. Default: AlarmChecker

6.6 Algorithm Manager

Executes algorithms and provides output parameters.

6.6.1 Class Name

org.yamcs.algorithms.AlgorithmManager81

6.6.2 Configuration

This service is defined in etc/processor.yaml. Example:

realtime:
services:
- class: org.yamcs.algorithms.AlgorithmManager
args:
libraries:
JavaScript:
- "mdb/mylib.js"

6.6.3 Configuration Options

libraries (map)
Libraries to be included in algorithms. The map points from the scripting language to a list of file paths.

6.7 Local Parameter Manager

Manages and provides local parameters.

6.7.1 Class Name

org.yamcs.parameter.LocalParameterManager82

81 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/algorithms/AlgorithmManager.html
82 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/parameter/LocalParameterManager.html

95

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/algorithms/AlgorithmManager.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/parameter/LocalParameterManager.html

6.7.2 Configuration

This service is defined in etc/processor.yaml. Example:

realtime:
services:
- class: org.yamcs.parameter.LocalParameterManager

6.8 Replay Service

Provides telemetry packets and processed parameters from the archive.

6.8.1 Class Name

org.yamcs.tctm.ReplayService83

6.8.2 Configuration

This service is defined in etc/processor.yaml. Example:

Archive:
services:
- class: org.yamcs.tctm.ReplayService

6.8.3 Configuration Options

excludeParameterGroups (list of string)
Parameter groups to exclude from being replayed.

6.9 Stream Parameter Provider

Provides parameters received from the configured param stream.

6.9.1 Class Name

org.yamcs.tctm.StreamParameterProvider84

6.9.2 Configuration

This service is defined in etc/processor.yaml. Example:

realtime:
services:
- class: org.yamcs.tctm.StreamParameterProvider
args:
stream: "pp_realtime"

83 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/ReplayService.html
84 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/StreamParameterProvider.html

96

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/ReplayService.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/StreamParameterProvider.html

6.9.3 Configuration Options

streams (list of strings)
Required. The streams to read.

6.10 Stream TC Command Releaser

Sends commands to the configured tc streams.

The service supports sending commands to multiple streams depending on the command name. Each
stream can be connected to a different data link, thus allowing Yamcs to control multiple targets concurrently.

The streams where the commands are sent to are defined as part of the streamConfig section (page 51) in
the etc/yamcs.instance.yaml instance configuration file.

6.10.1 Class Name

org.yamcs.StreamTcCommandReleaser85

6.10.2 Configuration

This service is defined in etc/processor.yaml. Example:

realtime:
services:
- class: org.yamcs.StreamTcCommandReleaser

6.10.3 Configuration Options

stream (string)
The stream to send commands to. This option is deprecated in favor of the stream configuration de-
fined at instance level. Among others, that configuration is preferred because it allows having different
streams for different instances, whereas etc/processor.yaml defines this service is common for all
instances.

6.11 Stream TM Packet Provider

Receives packets from tm streams and sends them to the processor for extraction of parameters.

This respects the root container defined as part of the streamConfig in etc/yamcs.yaml.

6.11.1 Class Name

org.yamcs.StreamTmPacketProvider86

85 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/StreamTcCommandReleaser.html
86 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/StreamTmPacketProvider.html

97

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/StreamTcCommandReleaser.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/StreamTmPacketProvider.html

6.11.2 Configuration

This service is defined in etc/processor.yaml. Example:

realtime:
services:
- class: org.yamcs.StreamTmPacketProvider
args:
streams: ["tm_realtime", "tm_dump"]

6.11.3 Configuration Options

streams (list of strings)
Required. The streams to read.

98

7. Commanding

Yamcs supports XTCE concepts for commanding. Commands have constraints (preconditions) and verifiers
(postconditions). The constraints are checked before issuing an command and the verifiers are run after the
command has been issued to verify the different stages of execution.

In addition to the constraints/verifiers, Yamcs also implements the concept of command queue. This allows
an operator to inspect commands of other users before being issued. It also allows to block completely
commands from users during certain intervals (this effect can also be obtained with a constraint).

The commands and arguments are formatted to binary packets based on the XTCE definition.

7.1 Command Significance

Yamcs uses the XTCE concept of command significance. Each command's significance can have one of this
values none (default), watch, warning, distress, critical or severe.

In addition to the significance, the command has a message explaining why the command has the given
significance.

Currently, Yamcs Server does not check or impose anything based on the significance of the command. In the
future, the privileges may be used to restrict users that can send commands of high significance. However,
currently the information (significance + reason) is only given to an external application (Yamcs Studio) to
present it to the user in a suitable manner.

The command significance can be defined in the Excel Spreadsheet in the CommandOptions tab:

7.2 Command Queues

When a command is issued, it must first pass by a queue. Privileges are checked before the command is put
into the queue, so if the user does not have the privilege for the given command, the command is rejected

99

before even reaching the queue.

The available queues are defined in the file etc/command-queue.yaml.

supervised:
state: blocked
minLevel: critical

default:

If this file is absent, a default queue is created, equivalent to this configuration:

default:

Queues can be in one of three states: enabled, blocked or disabled. When the state is not specified in
the etc/command-queue.yaml configuration file, the latest state will be remembered across server restarts,
defaulting to enabled. If there is a configured state, that will always be applied as the initial state of that
queue.

Each queue has optional conditions. Issued commands are offered to the first queue (in definition order)
whose conditions match the command.

The conditions are:

• minLevel (one of watch, warning, distress, critical or severe)
Match only commands that are at least as significant as minLevel.

• users (list of usernames)
Match only commands that are issued by one of the specified users.

• groups (list of group names)
Match only commands that are issued by one of the specified groups.

• tcPatterns (list of command name patterns)
Match only commands whose qualified name matches any of the specified patterns.

The conditions users and groups are evaluated together: it suffices if the issuer matches with one of these
two conditions. All other conditions must all apply, before a command can be matched to the queue.

At runtime, a queue can perform different actions on matched commands:

• ACCEPT (state: enabled)
Matched commands are immediately released.

• HOLD (state: blocked)
Matched commands are accepted into the queue but need to be manually released.

• REJECT (state: disabled)
Matched commands are immediately rejected.

The queue action can be changed dynamically by users with the ControlCommandQueue privilege.

7.3 Transmission Constraints

When the is set to be released from the queue (either manually by an operator or automatically because the
queue was in the Enabled state), the transmission constraints are verified.

The command constraints are conditions set on parameters that have to be met in order for the command to
be released. There can be multiple constraints for each command and each constraint can specify a timeout
which means that the command will fail if the constraint is not met within the timeout. If the timeout is 0, the
condition will be checked immediately.

The transmission constraints can be defined in the Excel Spreadsheet in the CommandOptions tab.

100

Currently it is only possible to specify the transmission constraints based on parameter verification. This cor-
responds to Comparison and ComparisonList in XTCE. In the future it will be possible to specify transmission
constraints based on algorithms. That will allow for example to check for specific values of arguments (i.e.
allow a command to be sent if cmdArgX > 3).

101

102

8. Services

Yamcs functionality is modularised into different services, representing objects with operational state, with
methods to start and stop. Yamcs acts as a container for services, each running in a different thread. Services
carry out a specific function. Some services are vital to core functionality, others can be thought of as more
optional and give Yamcs its pluggable nature.

Services appear at different conceptual levels:

• Global services provide functionality across all instances.

• Instance services provide functionality for one specific instance.

8.1 Global Services

8.1.1 HTTP Server

Embedded HTTP server that supports static file serving, authentication and API requests.

The HTTP Server is tightly integrated with the security system of Yamcs and serves as the default interface
for external tooling wanting to integrate. This covers both server-to-server and server-to-user communication
patterns.

The HTTP Server can be disabled when its functionality is not needed. Note that in this case also official
external clients such as Yamcs Studio will not be able to connect to Yamcs.

8.1.1.1 Class Name

org.yamcs.http.HttpServer87

8.1.1.2 Configuration

This is a global service defined in etc/yamcs.yaml. Example:

services:
- class: org.yamcs.http.HttpServer
args:
port: 8090
webSocket:
writeBufferWaterMark:
low: 32768
high: 65536

cors:
allowOrigin: "*"
allowCredentials: false

87 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/http/HttpServer.html

103

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/http/HttpServer.html

8.1.1.3 Configuration Options

address (string)
The local address to which Yamcs will bind waiting for HTTP clients. If unset, Yamcs binds to a wildcard
address.

port (integer)
The port to which Yamcs will bind waiting for HTTP clients. Default: 8090

tlsCert (string or list of strings)
If specified, the server will be listening for TLS connections. TLS is used for encrypting the data.

In case the file is a bundle containing multiple certificates, the certificates must be ordered from leaf to
root.

Multiple certificate files may also be provided as an array. Again, certificates must then be ordered from
leaf to root, between the files and also between certificates within the files.

tlsKey (string)
Required if tlsCert is specified. The key to the certificate.

contextPath (string)
Path string prepended to all routes. For example, a contextPath of /yamcs will make the API available
on /yamcs/api instead of the default /api. When using this property in combination with a reverse
proxy, you should ensure that the proxy path matches with the context path because rewriting may lead
to unexpected results.

maxContentLength (integer)
Maximum allowed length of request bodies. This is applied to all non-streaming API requests. Default:
65536

Some routes may specify a custom maxBodySize option, in which case the maximum of the two values
gets applied.

maxInitialLineLength (integer)
Maximum allowed length of the initial line (for example: GET / HTTP/1.1). Default: 8192

maxHeaderSize (integer)
Maximum allowed length of all headers combined. Default: 8192

maxPageSize (integer)
Maximum allowed page size.

This corresponds with the limit query parameter that is used in the HTTP API.

Default: 1000.

nThreads (integer)
Configure the number of threads that handle HTTP requests. The value 0 resolves to two times the
number of CPU cores. Default: 0

reverseLookup (boolean)
If enabled, hostnames instead of IP addresses are used to identify clients. Use of this option may
trigger name service reverse lookups. Default: false

webSocket (map)
Configure WebSocket properties. Detailed below. If unset, Yamcs uses sensible defaults.

cors (map)
Configure cross-origin resource sharing for the HTTP API. Detailed below. If unset, CORS is not
supported.

8.1.1.3.1 WebSocket sub-configuration

maxFrameLength (integer)
Maximum frame length in bytes. This is applied to incoming frames. Default: 65536

104

writeBufferWaterMark (map)
Water marks for the write buffer of each WebSocket connection. When the buffer is full, messages are
dropped. High values lead to increased memory use, but connections will be more resilient against
unstable networks (i.e. high jitter). Increasing the values also help if a large number of messages are
generated in bursts. The map requires keys low and high indicating the low/high water mark in bytes.

Default: { low: 32768, high: 131072 }

pingWhenIdleFor (integer)
Idle timeout in seconds (either read or write). When this timeout is met, a WebSocket ping frame is
sent to the connected client. This helps prevent unexpected closes by intermediate firewalls or proxies.

To disable ping frames, set this value to 0.

Default: 40.

8.1.1.3.2 CORS sub-configuration CORS (cross-origin resource sharing) facilitates use of the API in
client-side applications that run in the browser. CORS is a W3C specification enforced by all major browsers.
Details are described at https://www.w3.org/TR/cors/. Yamcs simply adds configurable support for some of
the CORS preflight response headers.

Note that the embedded web interface of Yamcs does not need CORS enabled, because it shares the same
origin as the HTTP API.

allowOrigin (string)
Exact string that will be set in the Access-Control-Allow-Origin header of the preflight response.

allowCredentials (boolean)
Whether the Access-Control-Allow-Credentials header of the preflight response is set to true.
Default: false

8.1.2 Process Runner

Runs an external process. If this process exits this Yamcs service stops too unless a restart option is
configured and applicable.

The subprocess inherits environment variables set on Yamcs, and additionally includes the variable YAMCS=1.
Further environment variables can be configured.

8.1.2.1 Class Name

org.yamcs.ProcessRunner88

8.1.2.2 Configuration

This is a global service defined in etc/yamcs.yaml. Example:

services:
- class: org.yamcs.ProcessRunner
args:
command: "bin/simulator.sh"

8.1.2.3 Configuration Options

command (string or string[])
Required. Command (and optional arguments) to run.

88 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/ProcessRunner.html

105

https://www.w3.org/TR/cors/
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/ProcessRunner.html

directory (string)
Set the working directory of the started subprocess. If unspecified, this defaults to the working directory
of Yamcs.

environment (map)
Pass custom environment variables to the subprocess.

logLevel (string)
Level at which to log stdout/stderr output. One of INFO, DEBUG, TRACE, WARN, ERROR. Default: INFO

logPrefix (string)
Prefix to prepend to all logged process output. If unspecified this defaults to [COMMAND].

restart (string)
When to start a new process if the original process exits. One of always, on-success, on-failure or
never. Default: never.

successExitCode (integer or integer[])
Exit codes of the subprocess that are considered successful. This is used to evaluate the appropriate
restart behavior. Default: 0.

8.1.3 TSE Commander

This service allows dispatching commands to Test Support Equipment (TSE). The instrument must have a
remote control interface (Serial, TCP/IP) and should support a text-based command protocol such as SCPI.

8.1.3.1 Class Name

org.yamcs.tse.TseCommander89

8.1.3.2 Configuration

This is a global service defined in etc/yamcs.yaml. Example:

services:
- class: org.yamcs.tse.TseCommander

8.1.3.3 Configuration Options

telnet (map)
Required. Configure Telnet properties.

Example: { port: 8023 }

tc (map)
Required. Configure properties of the TC link.

Example: { port: 8135 }

tm (map)
Required. Configure properties of the TM link.

Example: { host: localhost, port: 31002 }

This service reads further configuration options from a file etc/tse.yaml. This file defines all the instruments
that can be commanded. Example:

89 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tse/TseCommander.html

106

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tse/TseCommander.html

instruments:
- name: tenma
class: org.yamcs.tse.SerialPortDriver
args:
path: /dev/tty.usbmodem14141
Note: this instrument does not terminate responses.
Use a very short timeout to compensate (still within spec)
responseTermination: "\n"
responseTimeout: 100

- name: simulator
class: org.yamcs.tse.TcpIpDriver
args:
host: localhost
port: 10023
responseTermination: "\r\n"

- name: rigol
class: org.yamcs.tse.TcpIpDriver
args:
host: 192.168.88.185
port: 5555
responseTermination: "\n"

- name: udptest
class: org.yamcs.tse.UdpDriver
args:
host: localhost
port: 5005

There are two types of drivers. Both drivers support these base arguments:

responseTermination (string)
The character(s) by which the instrument delimits distinct responses. Typically \n or \r\n. This may
be left unspecified if the instrument does not delimit responses.

commandSeparation (string)
The character(s) that indicates when the command will generate multiple distinct responses (delimited
by responseTermination). For most instruments this should be left unspecified.

responseTimeout (integer)
Timeout in milliseconds for a response to arrive. Default: 3000

requestTermination (string)
Character(s) to append to generated string commands. This is typically used for adding newline char-
acters with make the instrument detect a complete request.

Set this to null if you do not want to disable request termination.

The default value is driver-specific. For the TCP/IP driver it defaults to \n whereas for the Serial Port
driver, it is unset.

interceptors (list of maps)
Adds an interceptor chain where each interceptor must be an implementation of
org.yamcs.tse.Interceptor90. Interceptors are executed top-down on these events:

1. A new command is about to be issued. The interceptor can inspect it, or make final changes.
The input is in the form of a raw byte array and includes any request termination characters (if
applicable).

2. A non-null response was received. The interceptor can inspect it, or make adjustments before
handing it over to the next interceptor. Only at the end of the chain, the response bytes are in-
terpreted by the TSE Commander. Note that the response bytes do not include the response
termination characters (if any), because the driver already strips them off while delimiting mes-
sages from the incoming stream.

90 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tse/Interceptor.html

107

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tse/Interceptor.html

Yamcs ships with one standard interceptor which you can add to an instrument's configuration if you
want to enable logging of its command and response messages:

- name: myinstrument
class: org.yamcs.tse.TcpIpDriver
args:

...
interceptors:
- class: org.yamcs.tse.LoggingInterceptor

In addition each driver supports driver-specific arguments:

8.1.3.3.1 TCP/IP

host (string)
Required. The host of the instrument.

port (integer)
Required. The TCP port to connect to.

8.1.3.3.2 UDP

host (string)
Required. The host of the instrument.

port (integer)
Required. The UDP port to send to.

sourcePort (integer)
Local sender port. This is also the port where replies can be sent. Default: any available port.

maxLength (integer)
Buffer size for receiving a single reply. Default: 1500

8.1.3.3.3 Serial Port

path (string)
Required. Path to the device.

baudrate (number)
The baud rate for this serial port. Default: 9600

dataBits (number)
The number of data bits per word. Default: 8

parity (string)
The parity error-detection scheme. One of odd or even. By default parity is not set.

8.1.3.4 Mission Database

The definition of TSE string commands is done in space systems resorting under /TSE. The /TSE node is
added by defining org.yamcs.tse.TseLoader91 in the MDB loader tree. Example:

mdb:
- type: org.yamcs.tse.TseLoader
subLoaders:

- type: sheet
spec: mdb/tse/simulator.xls

91 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tse/TseLoader.html

108

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tse/TseLoader.html

The instrument name in etc/tse.yaml should match with the name of the a sub space system of /TSE.

The definition of commands and their arguments follows the same approach as non-TSE commands but with
some particularities:

• Each command should have either QUERY or COMMAND as its parent. These abstract commands are
defined by the org.yamcs.tse.TseLoader92.

– QUERY commands send a text command to the remote instrument and expect a text response.
The argument assignments command and response must both be set to a string template that
matches what the instrument expects and returns.

– COMMAND commands send a text command to the remote instrument, but no response is expected
(or it is simply ignored). Only the argument assignment command must be set to a string template
matching what the instrument expects.

• Each TSE command may define additional arguments needed for the specific command. In the def-
inition of the command and response string templates you can refer to the value of these arguments
by enclosing the argument name in angle brackets. Example: an argument n can be dynamically
substituted in the string command by referring to it as <n>.

• Additionally you can instruct Yamcs to extract one or more parameter values out of instrument response
for a particular command by referring to the parameter name enclosed with backticks. This parameter
should be defined in the same space system as the command and use the non-qualified name. The
raw type of these parameters should be string.

To illustrate these concepts with an example, consider this query command defined in the space system
/TSE/simulator:

Command name Assignments Arguments

get_identification
(parent: QUERY)

command=*IDN?
response=`identification`

When issued, this command will send the string *IDN? to the instrument named simulator. A string re-
sponse is expected and is read in its entirety as a value of the parameter /TSE/simulator/identification.

The next example shows the definition of a TSE command that uses a dynamic argument in both the com-
mand and the response string templates:

Command name Assignments Arguments

get_battery_voltage
(parent: QUERY)

command=:BATTERY<n>:VOLTAGE?
response=`battery_voltage<n>`

n (range 1-3)

When issued with the argument 2, Yamcs will send the string :BATTERY2:VOLTAGE? to the remote instrument
and read back the response into the parameter /TSE/simulator/battery_voltage2. In this simple case
you could alternatively have defined three distinct commands without arguments (one for each battery).

Note: When using the option commandSeparation, the response argument of the command template
should use the same separator between the expected responses. For example a query of :DATE?;:TIME?

92 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tse/TseLoader.html

109

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tse/TseLoader.html

with command separator ; may be matched in the MDB using the pattern: `date_param`;`time_param`

(regardless of the termination character).

8.1.3.5 Telnet Interface

For debugging purposes, this service starts a telnet server that allows to directly relay text-based commands
to the configured instruments. This bypasses the TM/TC processing chain. Access this interface with an
interactive TCP client such as telnet or netcat.

The server adds additional SCPI-like commands which allow to switch to any of the configured instruments
in a single session. This is best explained via an example:

$ nc localhost 8023
:tse:instrument rigol
*IDN?
RIGOL TECHNOLOGIES,DS2302A,DS2D155201382,00.03.00
:cal:date?;time?
2018,09,14;21,33,41
:tse:instrument tenma
*IDN?
TENMA72-2540V2.0
VOUT1?
00.00
:tse:output:mode hex
VOUT1?
30302E3030

In this session we interacted with two different instruments (named rigol and tenma). The commands
starting with :tse were directly interpreted by the TSE Commander, everything else was sent to the selected
instrument.

8.1.4 Replication Server

The replication server facilitates the communication between Replication Master (page 125) and Replication
Slave (page 127). The master and slaves defined with the tcpRole server will register to this component to
be called when an external TCP client connects. Multiple master and slaves from different Yamcs instances
in the same Yamcs server will register to the same replication server.

A remote slave when connecting will send a request message indicating the instance and the transaction it
wants to start the replay with. The replication server will forward the request to the registered local master
which will immediately start the replay.

A remote master when connecting to the replication server will send a wakeup message indicating the in-
stance of the slave. The replication server will redirect the message to the registered local slave which in turn
will send a request to the master indicating the transaction start.

8.1.4.1 Class Name

org.yamcs.replication.ReplicationServer93

8.1.4.2 Configuration

This service is defined in etc/yamcs.yaml. Example:

93 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/replication/ReplicationServer.html

110

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/replication/ReplicationServer.html

services:
- class: org.yamcs.replication.ReplicationServer
args:
port: 8099
tlsCert: /path/to/server.crt
tlsKey: /path/to/server.key
maxTupleSize: 131072

8.1.4.3 Configuration Options

port (integer)
Required The port to listen for TCP connections.

tlsCert (string or list of strings)
If specified, the server will be listening for TLS connections. TLS is used for encrypting the data, client
certificates are not supported. If TLS is enabled, all connections have to be encrypted, the server does
not support TLS and non-TLS connections simultaneously.

In case the file is a bundle containing multiple certificates, the certificates must be ordered from leaf to
root.

Multiple certificate files may also be provided as an array. Again, certificates must then be ordered from
leaf to root, between the files and also between certificates within the files.

tlsKey (string)
Required if tlsCert is specified. The key to the certificate.

maxTupleSize (integer)
Used for the slaves with tcpRole = server - configures the maximum size of the serialized tuples re-
ceived from the master. If the serialized tuples are larger than this size, this limit has to be increased
otherwise the tuples cannot be transferred. Default: 131072 (128 KB).

8.2 Instance Services

8.2.1 Alarm Recorder

Records alarms. This service stores the data coming from one or more streams into a table alarms.

8.2.1.1 Class Name

org.yamcs.archive.AlarmRecorder94

8.2.1.2 Configuration

This service is defined in etc/yamcs.instance.yaml. Example:

services:
- class: org.yamcs.archive.AlarmRecorder

streamConfig:
alarm:
- alarms_realtime

With this configuration alarms emitted to the alarms_realtime stream are stored into the table alarms.

94 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/archive/AlarmRecorder.html

111

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/archive/AlarmRecorder.html

8.2.2 Command History Recorder

Records command history entries. This service stores the data coming from one or more streams into a table
cmdhist.

8.2.2.1 Class Name

org.yamcs.archive.CommandHistoryRecorder95

8.2.2.2 Configuration

This service is defined in etc/yamcs.instance.yaml. Example:

services:
- class: org.yamcs.archive.CommandHistoryRecorder

streamConfig:
event:
- cmdhist_realtime
- cmdhist_dump

With this configuration events emitted to the cmdhist_realtime or cmdhist_dump stream are stored into
the table cmdhist.

8.2.3 Event Recorder

Records events. This service stores the data coming from one or more streams into a table events.

8.2.3.1 Class Name

org.yamcs.archive.EventRecorder96

8.2.3.2 Configuration

This service is defined in etc/yamcs.instance.yaml. Example:

services:
- class: org.yamcs.archive.EventRecorder

streamConfig:
event:
- events_realtime
- events_dump

With this configuration events emitted to the events_realtime or events_dump stream are stored into the
table events.

8.2.4 CCSDS TM Index

Creates an index for the CCSDS Space Packets (CCSDS 133.0-B-1
<https://public.ccsds.org/Pubs/133x0b1c2.pdf>) based on the sequence count in the primary header.
The index allows to see per APID the available packets in the archive. The main use of such index is to

95 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/archive/CommandHistoryRecorder.html
96 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/archive/EventRecorder.html

112

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/archive/CommandHistoryRecorder.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/archive/EventRecorder.html

detect when packets are missing. It can be combined with user defined scripts that request missing data
from remote systems (if such systems exist that record data in the user specific setup).

The configuration allows to define a list of tm streams where the packets are read from. The packets on those
streams have to be CCSDS space packets. This service does not use the Mission Database for interpreting
the packets, it just reads the primary header from the binary data. If the packet length is less than 7 bytes, it
is discarded.

The index can be visualized in the Yamcs web interface in the Archive Browser. It is denoted as Completeness
and contains one timeline bar for each APID.

8.2.4.1 Class Name

org.yamcs.archive.CcsdsTmIndex97

8.2.4.2 Configuration

This service is defined in etc/yamcs.instance.yaml. Example:

services:
- class: org.yamcs.archive.IndexServer
streams: ["tm-realtime", "tm_dump"]

8.2.4.3 Configuration Options

streams (list of strings)
The streams to index. When unspecified, all tm streams defined in streamConfig are indexed.

8.2.5 Parameter Archive Service

The Parameter Archive stores time ordered parameter values. The parameter archive is column-oriented
and is optimized for accessing a (relatively small) number of parameters over longer periods of time. Data is
stored in fixed duration time intervals, each interval covering a length of 223 milliseconds (~139 minutes).

An interval has always to be processed or reprocessed in full - this means if one data point is added in the
interval, the full 139 minutes of data have to be reprocessed.

Intervals are further split into segments such that each segment cannot contain more than a configurable
maximum number of samples. This is done in order to limit the number of samples stored in memory when
rebuilding an interval. A parameter that comes at high frequency will be split into multiple segments whereas
for one that comes at low frequency there will be only one segment in each interval.

The parameters are grouped such that the samples of all parameters from one group have the same times-
tamp. For example all parameters extracted from one TM packet have usually the same timestamp and are
part of the same group. A special case is the aggregate parameters: these are decomposed into the individ-
ual members if scalar types but all values are belonging to the same group and thus the aggregate can be
rebuilt even though the members are stored separately.

8.2.5.1 Filling the parameter archive

Generating the parameter archive has to be done in batches since it is not possible to write individual data
points (i.e. a parameter value at one specific time). Generally, the data has to come from a processor (either
realtime or replay).

There are three mechanisms implemented:

97 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/archive/CcsdsTmIndex.html

113

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/archive/CcsdsTmIndex.html

• the realtime filler monitors the realtime processor and builds in memory parts of the archive which are
then written to the archive when the segments are full.

• the backfiller builds parts of the archive from the past. It can monitor incoming (dump) tm or parameter
streams and start filling processes based on the data that is coming on those streams. It can also run
periodically independent of any incoming data.

• finally, the API can be used to rebuild parts of the archive.

8.2.5.2 Class Name

org.yamcs.parameterarchive.ParameterArchive98

8.2.5.3 Configuration

This service is defined in etc/yamcs.instance.yaml. Example:

services:
- class: org.yamcs.parameterarchive.ParameterArchive
args:
realtimeFiller:
enabled: true
flushFrequency: 300 #seconds

backFiller:
#warmupTime: 60 seconds default warmupTime
automaticBackfilling: true
schedule: [{startInterval: 10, numIntervals: 3}]

This configuration enables the realtime filler, and in addition the backFiller fills the archive 10 intervals in the
past, 3 intervals at a time.

services:
- class: org.yamcs.parameterarchive.ParameterArchive
args:
realtimeFiller:
enabled: false

backFiller:
enabled: true
warmupTime: 120
schedule:

- {startInterval: 10, numIntervals: 3}
- {startInterval: 2, numIntervals: 2, frequency: 600}

This configuration does not use the realtime filler, but instead performs regular (each 600 seconds) back-
fillings of the last two intervals. It is the configuration used in the ISS ground segment where due to regular
(each 20 to 30 minutes) LOS (loss of signal), the archive is very fragmented and the only way to obtain
continuous data is to perform replays.

Starting with Yamcs 5.11.1, it is possible to specify better how the archive should be rebuild based on moni-
toring stream data (tm packets and parameters):

services:
- class: org.yamcs.parameterarchive.ParameterArchive
args:
realtimeFiller:
enabled: false

backFiller:
streamUpdateFillPolicy:

- dataAge: 168.0 # Disable the automatic rebuild (manual rebuild required) of data older␣
→˓than 7 days

fillFrequency: -1
quietThreshold: -1

(continues on next page)

98 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/parameterarchive/ParameterArchive.html

114

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/parameterarchive/ParameterArchive.html

(continued from previous page)

- dataAge: 2.0 # Applies to data older than 2 hours but newer than 7 days
quietThreshold: 60 # Trigger a rebuild if no data arrives for 1 minute
fillFrequency: 3600 # Trigger a rebuild every hour even if the 1 min threshold above does␣

→˓not trigger a rebuild

- dataAge: 0 # Applies to new data not older than 2 hours (but it does not apply to data␣
→˓coming in the 'future')

quietThreshold: 10 # Trigger a rebuild if no new data is received for 10 seconds
fillFrequency: 600 # Fill every 10 minutes, even if the 10 sec threshold above does not␣

→˓trigger a rebuild

8.2.5.4 General Options

maxSegmentSize (integer)
The ParameterArchive stores data in segments, each segment storing multiple samples of the same
parameter. This option configures the maximum segment size.

The parameter archive accumulates data in memory to fill the segments, in parallel for all parameters.
This option affects thus the memory consumed when the parameter archive is being filled.

The segment size is limited by the duration of an interval, a segment cannot be larger than 223 millisec-
onds (approximately 139 minutes).

Starting with Yamcs 5.10 the segments from an interval are merged together inside RocksDB such that
when retrieving there is only one segment for each interval. In order to reduce the memory consumption
during parameter archive buildup, the default value of this setting has been changed from 5000 to 500.

Default: 500

sparseGroups (boolean)
If set to true Parameter Archive will allow gaps in the parameter groups. This reduces the memory con-
sumption and increases the retrieval speed at the expense of storing a gap list with some parameters.

Default: true

minimumGroupOverlap (double)
The term "minimum overlap" falling between 0 and 1 refers to the threshold used when determining
if a parameter list belongs to an existing group. Overlap between a parameter list and an existing
group (which is also formed from a parameter list) is calculated by dividing the number of the common
elements in both lists by the length of the smaller list. If one list is entirely contained within another, the
overlap value is 1.

Default: 0.5

coverageEndDelta (integer)
Number of seconds in the future, relative to the mission time, considered for the parameter archive
coverage end. Any data falling beyond this, it is not considered.

The coverage end should normally be in the past and it is used when retrieving parameters - if param-
eters fall before the coverage end, then the parameter retrieval service will attempt retrieval from the
parameter archive and will not try to retrieve the parameter via other means (cache or replay).

The reason for implementing this delta is to avoid adding by mistake some data in the far future caus-
ing the parameter retrieval to never use the cache (because theoretically all data is covered by the
parameter archive)

Default: 60 (one minute)

8.2.5.5 Backfiller Options

These options appear under the backFiller key.

115

warmupTime (integer)
When the backfiller performs a replay to fill a data interval, the replay will start this number of seconds
before the interval start. This is sometimes required for algorithms that aggregate data, to be able to
have all the input data necessary to produce the output. Default: 60

automaticBackfilling (boolean)
If true the backfiller executes backfilling operations according to the schedule or the streamUpdate-
FillPolicy. Default: true if the realtime filler is disabled and false if the realtime filler is enabled. The
automatic backfilling can be enabled/disabled at runtime via an API call.

monitorStreams (string[])
The list of tm or parameter streams that will be monitored to check for new data. If the list is empty,
no stream will be monitored and the archive will be rebuilt according to the schedule defined below.
Default: all the tm and param streams defined in the etc/yamcs.instance.yaml streamConfig sec-
tion. The backfiller will check the generation time of the packet or parameter received on the monitoring
streams and will mark that interval as dirty. As soon as the quietPeriodThreshold is reached or the
streamUpdateFillFrequency timer (see below) expires, a new filling task is started for that interval.

streamUpdateFillFrequency (integer)
Valid if the monitorStreams is not empty, configures how often in seconds the fillup based on the
stream monitoring is started. The fillup only starts if new data has been received on the streams. The
time applies from the last time the filler ran. Default 3600.

Starting with Yamcs 5.11.1, this option is deprecated in favour of the streamUpdateFillPolicy below.
Internally it is replaced with streamUpdateFillPolicy: [{dataAge: -1, fillFrequency: 600, quietThreshold:
-1}] which is the behaviour in the previous Yamcs versions.

streamUpdateFillPolicy (list of maps)
This policy applies when monitorStreams is not empty. It determines how often the archive is updated
based on incoming stream data. A fill operation only occurs when new data is received. The list
contains multiple entries, each specifying update behavior for a different data age.

Each entry in the list has the following keys:

dataAge (float)
Required Specifies the number of hours in the past this entry applies to. This deter-
mines which quietThreshold and fillFrequency settings are used: * Helps reduce rebuild
frequency for older data. * Computed as: mission time - data timestamp. * If data is
received in the future (relative to mission time), the age is negative. In such cases, add
an entry with a negative dataAge if the archive should be rebuilt.

fillFrequency (integer)
Determines how often (in seconds) the archive is updated when new data arrives. A
negative value disables periodic updates. Default 3600.

quietThreshold: (integer)
Specifies how long (in seconds) streams must be inactive before triggering an immediate
rebuild. It helps react quickly to data inactivity instead of waiting for fillFrequency. A
negative value disables stream quietness monitoring, the fillFrequency above will be
used to trigger periodic rebuilds. Default: 60

Disabling both fillFrequency and quietThreshold will make the filler ignore data older than the
dataAge (manual rebuilding the archive is still possible).

The different entries are sorted in increasing order of dataAge and for each tuple received on
one of the monitoring streams, the last entry with the dataAge less than or equal to tupleAge
where tupleAge = (mission time - tuple time), will apply. If no entry meets this con-
dition, the tuple will be ignored.

The default policy is [{dataAge: -1, fillFrequency: 600, quietThreshold: 60}, {dataAge: 2,
fillFrequency: -1, quietThreshold: 60}]. This means that data that is newer than 2 hours and
up to one hour in the future causes the archive to be rebuilt every 10 minutes or 10 seconds
after no data is received (unlikely since Yamcs always generates some parameters), and data

116

that is older than 2 hours causes the archive to be rebuild as soon as no data is received for
one minute.

schedule (list of maps)
This option contains a list of schedules configuring when the parameter archive runs. This is used
when the back filler does not monitor any input stream and instead rebuilds the archive according to a
schedule (even if there was maybe no new data received). Each map in the list has the following keys:

startInterval (integer)
Required. when a backfiller starts, it starts processing with this number of intervals in the past.

numIntervals (integer)
Required. how many intervals to process at one time

frequency (integer)

compactFrequency (integer)
After how many backfilling tasks to compact the underlying RocksDB database. Because the backfiller
removes the previous data, RocksDB will have lots of tombstones to skip over when reading. Compact-
ing will get rid of the tombstones. Compacting improves the reading at the expense of writing speed.
-1 means that no compaction will be performed (RocksDB merges by itself files, and that also gets rid
of the tombstones).

Default value: -1

8.2.5.6 Realtime filler Options

enabled (boolean)
If true the realtime filler is enabled. Default: true

processorName (String)
The name of the processor used to receive realtime data. Default: realtime

sortingThreshold (integer) milliseconds
When receiving realtime data, the realtime filler builds up data in memory. In order to know that data can
be written to the archive (whole segments at once) the filler needs to know that no data can be received
into the old segments. This option configures in milliseconds the amount of acceptable unsorting - that
is each new data timestamp which is older than the previous received data timestamp, will be accepted
as long as the difference is not bigger than this.

This option is interpreted at the level of parameter group; For example having multiple streams of TM
packets (a stream understood as an ordered sequence of packets not necessarily a Yamcs stream)
with different timestamps is not a problem as long as each stream has its monotonic increasing time.

Note also the option pastJumpThreshold below. Default: 1000

pastJumpThreshold (integer) seconds
When processing data and the time jumps in the past with more than this number of seconds, the
realtime filler will flush all the segments to disk and start from scratch. Default 86400.

numThreads (integer)
The realtime filler will compress and flush the segments to disk in background. This option configures
how many threads should be used for that operation. The default is the total number of CPUs of the
system minus 1.

flushInterval (integer) seconds
If no data is received for a parameter group in this number of seconds, then flush the data to the archive.
If data is received regularely, it will be flushed when the segment is full (see maxSegmentSize above)

8.2.6 Parameter List Service

This service creates a parameter_list table in the Yamcs DB, and enables UI functionality relating to
parameter lists.

117

8.2.6.1 Class Name

org.yamcs.plists.ParameterListService99

8.2.6.2 Configuration

This service is defined in etc/yamcs.instance.yaml. Example:

services:
- class: org.yamcs.plists.ParameterListService

8.2.6.3 Configuration Options

Not applicable

8.2.7 Parameter Recorder

Records parameters. This service stores the data coming from one or more streams into a table pp. The
term pp stands for processed parameter. These are parameters that typically are processed by an external
system before being recorded in Yamcs. It is also used to store system parameters that are generated by
Yamcs itself.

Note: Parameters extracted from packets are usually not stored in pp. Instead Yamcs provides a different
service called the Parameter Archive (page 113) which is specially optimized for data retrieval.

8.2.7.1 Class Name

org.yamcs.archive.ParameterRecorder100

8.2.7.2 Configuration

This service is defined in etc/yamcs.instance.yaml. Example:

services:
- class: org.yamcs.archive.ParameterRecorder

streamConfig:
param:
- pp_realtime
- sys_param

With this configuration both system parameters and processed parameters coming from the pp_realtime
stream are stored into the table pp.

8.2.7.3 Configuration Options

streams (list of strings)
The streams to record. When unspecified, all param streams defined in streamConfig are recorded.

99 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/plists/ParameterListService.html
100 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/archive/ParameterRecorder.html

118

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/plists/ParameterListService.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/archive/ParameterRecorder.html

This service implements parameter retrieval. It stands behind the "/parameters" API endpoints.

It has been introduced in Yamcs 5.11.0. In order to not require modification of all existing configurations, the
service is enabled automatically at startup. It can still be declared in order to change the default configuration.

The service combines retrieval from several sources:

• Parameter Archive - this stores efficiently parameter values for long durations. However the parameter
archive is built by the back filler in segments and generally a segment cannot be used unless the full
segment has been built and written to the database.

• Replays - this means processing a stream of packets for extracting parameters. For parameters not
part of packets, a similar process is used, entire rows from the pp table have to be streamed in order to
extract the value of the required parameters. This process makes the replays more CPU intensive but
the advantage is that up to date records can be retrieved.

• Parameter Cache - Yamcs can cache in memory the most recently received values of some parameters.
However, as this consumes RAM, the number of samples which can be cached is limited.

• Realtime Parameter Archive filler - in certain cases when it is guaranteed that only new data is received
(common case during lab/flatsat/EGSE tests), the realtime filler can be used instead of the back filler.
The realtime filler works as a parameter cache as well (so it can return values from the segments that
are being built), so the Parameter Cache is not required in this scenario.

8.2.8 Configuration Options

parallelRetrievals (integer)
Number of retrievals allowed to run concurrently. Default: 4.

procName (String)
Name of te processor used for the realtime subscription of the parameter cache (if enabled);

8.2.9 Parameter Cache options

These options are under the parameterCache configuration.

enabled (boolean)
If true, the parameter cache will be enabled. Default: enabled with the realtime parameter archive filler
is not enabled.

cacheAll (boolean)
If true, the cache will store all parameter value regardless if there is any user requesting them or not. If
false, the values are added to the cache only for the parameters requested by a user. Once a parameter
is added to the cache, its values are always cached. This option can be used to reduce the amount of
memory used by the cache with the inconvenience that first time retrieving the values of one parameter
will not have them in the cache.

Note that the option subscribeAll above is somehow similar - if that is set to false, then only some
parameters will be available for cache even if this option is set to true. Default: false

duration (integer)
How long in seconds the parameters should be kept in the cache. This value should be tuned according
to the parameter archive consolidation interval. Default: 6000

maxNumEntries (integer)
How many values should be kept in cache for one parameter. Default: 4096

8.2.10 Processor Creator Service

Creates persistent processors owned by the system user.

119

8.2.10.1 Class Name

org.yamcs.ProcessorCreatorService101

8.2.10.2 Configuration

This service is defined in etc/yamcs.instance.yaml. Example:

services:
- class: org.yamcs.ProcessorCreatorService
args:
name: realtime
type: realtime

8.2.10.3 Configuration Options

name (string)
Required. The name of the processor

type (string)
Required. The type of the processor

config (string)
Configuration string to pass to the processor

8.2.11 Replay Server

This service handles replay requests of archived data. Each replay runs with a separate processor that runs
in parallel to the realtime processing.

8.2.11.1 Class Name

org.yamcs.archive.ReplayServer102

8.2.11.2 Configuration

This service is defined in etc/yamcs.instance.yaml. Example:

services:
- class: org.yamcs.archive.ReplayServer

8.2.12 System Parameters Service

Collects system parameters from any Yamcs component at a frequency of 1 Hz. Parameter values are
emitted to the sys_var stream.

8.2.12.1 Class Name

org.yamcs.parameter.SystemParametersService103

101 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/ProcessorCreatorService.html
102 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/archive/ReplayServer.html
103 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/parameter/SystemParametersService.html

120

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/ProcessorCreatorService.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/archive/ReplayServer.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/parameter/SystemParametersService.html

8.2.12.2 Configuration

This service is defined in etc/yamcs.instance.yaml. Example:

services:
- class: org.yamcs.parameter.SystemParametersService
args:
provideJvmVariables: true

8.2.12.3 Configuration Options

provideJvmVariables (boolean)
When set to true this service will create a few system parameters that allows monitoring basic JVM
properties such as memory usage and thread count. Default: false

8.2.13 XTCE TM Recorder

Records XTCE TM sequence containers. This service stores the data coming from one or more streams into
a table tm. The tm table has a column called pname which stands for packet name. The main task of this
service is to assign the value for that column; all the other columns will come directly from the tm stream as
provided by the data links.

The pname is a fully qualified name of a matching XTCE container. In the XTCE hierarchy some containers
have a flag useAsArchivingPartition (this flag is an Yamcs extension to XTCE). That flag is used to
determine the container that will give its name to the packet when saved into the tm table - the name of the
lowest level matching container with this flag set is chosen as the pname. If no container matches, then the
name of the root container will be used.

8.2.13.1 Class Name

org.yamcs.archive.XtceTmRecorder104

8.2.13.2 Configuration

This service is defined in etc/yamcs.instance.yaml. Example:

services:
- class: org.yamcs.archive.XtceTmRecorder

streamConfig:
tm:
- tm_realtime
- tm_dump

With this configuration containers coming from both the tm_realtime and tm_dump streams are stored into
the table tm.

8.2.13.3 Configuration Options

streams (list of strings)
The streams to record. When unspecified, all tm streams defined in streamConfig are recorded.

104 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/archive/XtceTmRecorder.html

121

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/archive/XtceTmRecorder.html

8.2.14 Time Correlation Service

Correlates (synchronizes) time between a free running on-board clock and ground.

It receives samples (obt, ert) where:

• obt - onboard time considered to be a counter running based on an on-board computer clock.

• ert - Earth Reception Time - the time when the signal has been received on the ground - it is typically
provided by a ground station.

It takes into account the parameters:

• onboardDelay: Covers any delay happening on-board (sampling time, radiation time)

• tof: Time of flight: the time it takes for the signal to reach the ground. This can be fixed or computed
by dynamically interpolating from data provided by a flight dynamics system.

Assuming that:
ob_time = ert - (tof + onboardDelay)

the service will compute m = gradient and c = offset such that:
ob_time = m * obt + c

Using the computed gradient and offset, the free running obt can be correlated to the ground time. The
process has to be repeated each time the on-board computer resets to 0 (this typically happens when the
computer reboots). This method can compensate for a linear drift of the on-board clock.

The determination of the gradient and offset is done using the least squares method.

The number of samples used for computing the coefficients is configurable and has to be minimum 2.

The ground time ert being provided by a ground station (and not by Yamcs), is considered to be accurate
enough for the required purpose.

Note about accuracy : the main usage of this service is to timestamp the telemetry received from the on-board
system. Yamcs keeps such timestamps at milliseconds resolution. However the service keeps internally the
time at picosecond resolution so theoretically it can be used to achieve better than millisecond accuracy. In
practice this is not so easy: it requires an accurate on-board clock, an accurate ground-station clock, a good
time of flight estimation taking into account various effects (ionospheric, tropospheric delays, etc). All the
dynamic delays have to be incorporated into the time of flight estimation.

8.2.14.1 Accuracy and validity

Once the coefficients have been calculated, for each new sample received a deviation is calculated as the
delta between the OBT computed using the coefficients and the OBT which is part of the sample (after
adjusting for delays). The deviation is compared with the accuracy and validity parameters:

• If the deviation is greater than accuracy but smaller than validity, then a recalculation of the coeffi-
cients is performed based on the last received samples.

• If the deviation is greater than validity then the coefficients are declared as invalid and all the samples
from the buffer except the last one are dropped. The time returned by getTime() will be invalid until
the required number of new samples is received and the next recalculation is performed.

8.2.14.2 Verify Only Mode

If the on-board clock is synchronized via a different method, this service can still be used to verify the syn-
chronization.

The method verify(TmPacket pkt) will check the difference between the packet generation time and the
expected generation time (using ert - delays) and in case the difference is greater than the validity, the
packet will be changed with the local computed time and the flag {@link TmPacket#setLocalGenTime()} will
also be set.

122

mailto:\{@link

8.2.14.3 Usage

To use this service the preprocessor (or other mission specific service) will adds samples using the
addSample(long, Instant) each time it receives a correlation sample from on-board. How the on-board
system will send such samples is mission specific (for example the PUS protocol defines some specific time
packets for this purpose).

The preprocessor can then use the method getTime(long obt) to get the time corresponding to the obt or
call timestamp(long obt, TmPacket pkt) to timestamp the packet. The second method will timestamp
the packet with a time derived from the ert if the service is not synchronized. A corresponding flag will be
set on the packet so it can be distinguished in the archive.

8.2.14.4 Time of flight estimation

As explained above, the correlation process requires the estimation of the time of flight between the space-
craft and the ground station. This can be configured to a static value or dynamically computed based on
the user supplied polynomials on time intervals. The HTTP API105 can be used to add the intervals and
corresponding polynomials.

8.2.14.5 Class Name

org.yamcs.time.TimeCorrelationService106

8.2.14.6 Configuration

This service is defined in etc/yamcs.instance.yaml. Example:

services:
- class: org.yamcs.time.TimeCorrelationService
name: tco0
args:

onboardDelay: 0.0
useTofEstimator: false
defaultTof: 0.0
accuracy: 0.1
validity: 0.2
numSamples: 3

8.2.14.7 Configuration Options

onboardDelay (double)
The on-board delay in seconds. This is a fixed value estimating the time it takes for the time packet to
leave the spacecraft. The default value is 0 seconds.

useTofEstimator (boolean)
Flag to enable or disable time of flight estimator service. The default value is false. Enable time of flight
estimator service when it is required to dynamically compute the time of flight.

defaultTof (double)
The default time of flight in seconds. This value is used if the tof estimator does not return a value
because no interval has been configured.

accuracy (double)
The accuracy in seconds. See above for an explanation on how this value is used. Default: 0.1 (100
milliseconds).

105 https://docs.yamcs.org/yamcs-http-api/time-correlation/add-time-of-flight-intervals/
106 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/time/TimeCorrelationService.html

123

https://docs.yamcs.org/yamcs-http-api/time-correlation/add-time-of-flight-intervals/
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/time/TimeCorrelationService.html

validity (double)
The validity in seconds. See above for an explanation on how this value is used. Default: 0.2 (200
milliseconds).

numSamples (integer)
How many samples to collect before computing the correlation coefficients. It has to be minimum 2.
Default: 3.

8.2.15 Timeline Service

This services enables Timeline and Activity-related functionalities.

The Yamcs Timeline provides a visual, chronological overview of mission events. It can also be used to
schedule activities for future execution.

8.2.15.1 Class Name

org.yamcs.timeline.TimelineService107

8.2.15.2 Configuration

This service is defined in etc/yamcs.instance.yaml. Example:

services:
- class: org.yamcs.timeline.TimelineService
args:
activities:
scriptExecution:
searchPath: etc/scripts
impersonateCaller: false
fileAssociations:
py: python3 -u

8.2.15.3 Configuration Options

scheduling (map)
Placeholder for future scheduling-related options. Nothing currently.

activities (map)
Optional configuration for each of the supported activity executors.

The built-in types are commandExecution, stackExecution and scriptExecution. These are further
described in the sub-configuration sections below.

8.2.15.3.1 Command execution sub-configuration Placeholder for future command executor options.
Nothing currently.

8.2.15.3.2 Stack execution sub-configuration Placeholder for future stack executor options. Nothing
currently.

107 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/timeline/TimelineService.html

124

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/timeline/TimelineService.html

8.2.15.3.3 Script execution sub-configuration

searchPath (string or string[])
Directory where to locate scripts or executables.

Default: etc/scripts

fileAssociations (map)
Extend or override the default file associations. Each entry maps a file extension (case-insensitive) to
a program that should be used to execute this file.

The default file associations are:

fileAssociations:
java: java
js: node
mjs: node
pl: perl
py: python -u
rb: ruby

Any file that does not have an association, is executed directly.

impersonateCaller (boolean)
Scripts receive a transient API key via an environment variable. By default this API key uses the built-in
System user, which provides unrestricted access.

When this property is enabled, the script receives instead an API key of the user that started the activity.

Default: false

8.2.16 Replication Master

Replicates data streams to remote servers. Works both in TCP server and TCP client mode. In TCP server
mode, it relies on the Replication Server (page 110) to provide the TCP connectivity.

In TCP client mode, it connects to a list of slaves specified in the configuration.

The master works by storing stream of tuples serialized in memory mapped files
org.yamcs.replication.ReplicationFile108. Each tuple receives a 64 bit incremental transaction id. In
addition to the tuple data, there are some metadata transactions storing information about the streams and
allowing the data to be compressed. For example a parameter tuple has the potentially very long qualified
parameter names as column names, these are only stored in the metadata and replaced in the data by 32
bit integers. The serialization mechanism is the same used for serializing tuples in the stream archive but
there is no distinction between the key and the value.

The replication files are append only (except for a header which contains the number of tuples stored) and
contain a configurable number of tuples. The maximum size of the file is also configurable so a new file is
created either when the maximum number of transactions has been reached or when the maximum size of
the file has been reached.

The replication slaves are responsible for keeping track of their last received transaction id. In both TCP client
and server mode, the slaves are sending to the master the first transaction id and the master starts replaying
from there. In case the slave has not connected for a long time, the first transaction may be in one of the
deleted files. The master will start sending from the first transaction available.

New in version 5.6.1: the master will regularly send time messages in order to keep the connection alive if
there is no data. The slave can optionally use the time message to update the local mission time, synchro-
nizing it to the master.

108 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/replication/ReplicationFile.html

125

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/replication/ReplicationFile.html

8.2.16.1 Class Name

org.yamcs.replication.ReplicationMaster109

8.2.16.2 Configuration

This service is defined in etc/yamcs.instance.yaml. Example:

services:
- class: org.yamcs.replication.ReplicationMaster
args:

tcpRole: client
pageSize: 500
maxPages: 500
streams: ["tm_realtime", "tm2_realtime"]
maxFileSizeKB: 102400
expirationDays: 7
fileCloseTimeSec: 300
slaves:

- host: "localhost"
port: 8099
instance: "node2"
enableTls: false

reconnectionInterval: 5000

8.2.16.3 Configuration Options

tcpRole (string)
Required One of client or server.

maxPages (integer)
The number of pages of the replication file. The replication file header contains an index allowing to
access the start of each page. Thus more pages, the faster is to jump to a given transaction but the
larger the header. Since seeking a transaction is only performed when a slave connects, it is not critical
that the search is very fast. The total number of transactions in one file is maxPages times pageSize.
Default: 500

pageSize (integer)
The number of transactions on one page. Default: 500

streams (list of strings)
The list of streams that will be replicated. The replication file will contain multiplexed data from these
streams in order in which the data is generated. The connected slaves will receive data from all streams
but they may filter it out locally.

maxFileSizeKB (integer)
Maximum size in KB of the replication file. Default 102400 (e.g. the maximum file size will be 100 MB).

fileCloseTimeSec (integer)
How many seconds to keep a file open after being accessed by a slave. Default: 300.

expirationDays (double)
How many days to keep the replication files before removing them. Default: 7

slaves (list of maps)
Required if the tcpRole is client. The list of slaves to connect to. Each slave is specified as a
host/port and the slave instance name. In addition, TLS (encrypted connections) can be specified for
each slave individually using the enableTls option.

The replication master will connect to the replication server on the remote host/port and will send
a Wakeup message containing the salve instance name; the replication server will then redirect the
connection to the corresponding replication slave if one has registered for the given instance.

109 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/replication/ReplicationMaster.html

126

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/replication/ReplicationMaster.html

reconnectionIntervalSec (integer)
If the tcpRole is client this configures how often in seconds the replication master will try to connect
to the salve if the connection is broken. A negative value means that no reconnection will take place.

timeMsgFreqSec (integer)
Added in version 5.6.1. How often (in seconds) should send the time messages. Default: 10

8.2.17 Replication Slave

The slave counterpart to the Replication Master (page 125). It receives serialized tuple data from the master
and injects it in the local stream. Works both in TCP server and TCP client mode. In TCP server mode, it
relies on the Replication Server (page 110) to provide the TCP connectivity. In TCP client mode, it connects
to the master defined in the configuration.

The slave keeps track of the id of the last transaction received from the master in a local text file yamcs-data/
instance/replication/slave-lastid.txt. Each time the connection to the master is established, it
sends a request containing the last transaction id, plus one. The master will start replaying data from that
transaction. If the replication slave does not find the file at startup, it will receive all the data that the master
has.

There can be two or replication slaves running for the same instance, connected to two different masters.

To avoid an infinite message flood caused by a miss-configuration whereby a slave receives and inserts into
a stream the data which was extracted from the same stream, each incoming messages contains a 32 bit
instance id. This is the id of the instance where the message has originated from. If a slave receives a
message with its own instance id it will discard it and not insert it into the stream.

The instance id is calculated as a hash code from the <serverId>.<instanceName>. The serverId is by
default the hostname but can be changed in etc/yamcs.yaml.

New in version 5.6.1: the master will regularly send time messages in order to keep the connection alive if
there is no data. The slave can optionally use the time message to update the local mission time, synchro-
nizing it to the master.

8.2.17.1 Class Name

org.yamcs.replication.ReplicationSlave110

8.2.17.2 Configuration

This service is defined in etc/yamcs.instance.yaml. Example:

services:
- class: org.yamcs.replication.ReplicationSlave
args:

tcpRole: client
masterHost: localhost
masterPort: 8099
masterInstance: node1
enableTls: false
reconnectionIntervalSec: 30
streams: ["tm_realtime", "sys_param"]
lastTxFile: "slave-lastid.txt"

8.2.17.3 Configuration Options

tcpRole (string)
Required One of client or server.

110 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/replication/ReplicationSlave.html

127

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/replication/ReplicationSlave.html

masterHost (string)
Required if the tcpRole is client. The hostname of the master. Not relevant if the tcpRole is
server.

masterPort (integer)
Required if the tcpRole is client. The port of the master. Not relevant if the tcpRole is server.

masterInstance (string)
Required if the tcpRole is client. The instance of the master. When working in server tcp mode,
the instance on which the master is configured determines the data which will be passed to the slave.
If two masters try to connect to the same slave, only the first connection will be accepted.

enableTls (boolean)
Required Used when tcpRole is client. If true, a TLS connection will be attempted. The server
provided certificate will be checked against the trustStore in Yamcs etc/ directory. If the tcpRole is
server the usage or not of TLS is determined by the configuration of the Replication Server (page 110).

reconnectionIntervalSec (integer)
If the tcpRole is client this configures how often in seconds the slave will try to connect to the master
if the connection is broken. A negative value means that no reconnection will take place. Default: 30

streams (list of strings)
The list of streams that will be processed. The master may send data from other streams but they will
be filtered out.

lastTxFile (String)
The name of file where the slave will keep track of the last transaction id received from the server. It
defaults to the <service-name>-lastid.txt

maxTupleSize (integer)
if the tcpRole is client this configures the maximum size of one message received from the master. If
the serialized tuples are larger than this size, this limit has to be increased otherwise the tuples cannot
be transferred. Default 131072 (128KB).

timeoutSec (float)
Added in version 5.6.1. Timeout (in seconds) for detecting broken connections. If no message is
received in this time from the master, the connection will be closed. Even if there is no data, the master
sends a time message at configurable intervals.

Default: 30.

updateSimTime (boolean)
Added in version 5.6.1. If true, update the simulation time with the time received from the master
in the time messages, allowing to synchronize the mission time between the master an the slave.
This only works if the SimulationTimeService is configured on the same instance with this ser-
vice. The time0 will be set to 0 at the service startup. The messages received regularly from
the master contain the triplet (localTime, missionTime, speed) and will be used to call the methods
setSimElapsedTime(long javaTime, long simElapsedTime) and setSpeed(double speed) in
the SimulationTimeService.

The synchronization relies on the fact that the local (UNIX) times are synchronized between master
and slave. This has to be ensured at the system level (e.g. using NTP).

Default: false

8.2.18 CCSDS File Delivery Protocol (CFDP)

This service implements the CCSDS File Delivery Protocol class 1 (unreliable transfer also called unacknowl-
edged) and class 2 (reliable transfer also called acknowledged).

Class 3 and 4 (transfers via one or more waypoints) are not supported.

128

The service uploads and downloads files between a spacecraft (or a remote device) and a Yamcs bucket. In
the description below, the entity that sends the file is called the Sender and the entity that receives the file is
called the Receiver.

The protocol specification can be found in CCSDS 727.0-B-5111 The following description summarizes the
specs and provide details on the parts implemented/not implemented by this service.

The upload/download works by splitting the file into segments and uploading/downloading each segment
individually (usually embedded as part of a TC/TM packet). The transmission is preceded by a metadata
PDU (Protocol Data Unit) and finished with an EOF PDU. The Receiver will send the Finished PDU to let the
Sender know that all PDUs have been received.

The class 1 (unreliable transfer) will upload/download all the segments without the possibility of retransmis-
sion. The EOF is not acknowledged by the Receiver. The Issue 5 of the CFDP standard introduces an option
"Closure Requested" which requests the class 1 Receiver to send a Finished PDU upon receiving all the data
(or when the canceling the transfer). The Finished PDU is not acknowledged by the Sender. This option is
useful when the underlying communication protocol is reliable.

For class 2 (reliable transfer) transfers, the Receiver can indicate missing metadata or data by sending NAK
PDUs. In this mode, the Receiver has to acknowledge the EOF PDU and the Sender has to acknowledge
the Finished PDU. Sending a PDU that requires acknowledgment will start a timer. When the timer expires,
if the acknowledgment has not been received, the PDU is resent and this is done until a count reaches a
maximum defined value. Finally if the count has reached its maximum value and the acknowledgment has
still not been received, a fault condition is triggered which may cause the transfer to be abandoned, canceled
or suspended.

A diagram of the operations for class 2 is presented in the figure below. Note that the Receiver operates in
immediate NAK mode; it sends a NAK as soon as it receives the FileData PDU (containing a file segment)
and detects a missing segment.

Note also that the file is available on the Receiver before the transfer is completed by the reception of the
Finished ACK PDU.

111 https://public.ccsds.org/Pubs/727x0b5.pdf

129

https://public.ccsds.org/Pubs/727x0b5.pdf

The CFDP transfers can be suspended and resumed. Suspending means that no PDU is sent out but
incoming PDUs are still processed. The timers are deactivated. Upon resuming, the timers are restarted and
their counts reset to 0. For example if at the time of the suspension, an EOF has been sent 2 times out of
5, after the transfer is resumed, the EOF sending is again starting with 0 out of 5. This allows suspending
the transfer when the limit has been reached and resume the transfer at a later moment without changing the
state.

Several peculiarities and limitations of the implementation can be noted:

• The NAK PDUs issued by the Sender always contain the beginning of the file up to filling up the PDU
with data. Unless the file is very large and with lots of small gaps, a NAK PDU will contain all the
missing data at the given point.

• The Receiver will overwrite the list of segments to resend with the list received in the latest NAK.

• Keep Alive PDU and Prompt PDU are not used.

• Filestore requests are not supported.

• Only proxy put requests and directory listing requests are supported, other user operations (proxy,
remote status, etc.) as per chapter 6 of the CCSDS 727.0-B-5 are not supported.

• Remote suspend/resume operations are not supported. Note that local suspend/resume operations
are supported; this means that suspending a transfer has to be done concurrently on this service and
remotely with a different mechanism (e.g. sending a telecommand).

8.2.18.1 Usage

The service produces PDUs as per CCSDS specification. The PDUs are written/read to/from Yamcs streams.
How the PDUs are sent to/from the spacecraft is mission specific.

130

An example on how to use the streams to embed the CFDP PDUs into CCSDS packets can be seen in the
cfdp example (the most interesting part is in src/main/yamcs/etc/extra_streams.sql).

8.2.18.2 Class Name

org.yamcs.cfdp.CfdpService112

8.2.18.3 Configuration

This service is defined in etc/yamcs.instance.yaml. Example:

services:
- class: org.yamcs.cfdp.CfdpService
name: cfdp0
args:

sequenceNrLength: 4
maxPduSize: 512
incomingBucket: "cfdpDown"
eofAckTimeout: 3000
eofAckLimit: 3
sleepBetweenPdus: 1000
localEntities:
- name: id1
id: 11
bucket: bucket1

- name: id2
id: 12

remoteEntities:
- name: target1
id: 5

- name: target2
id: 7
bucket: bucket3

senderFaultHandlers:
AckLimitReached: suspend

receiverFaultHandlers:
AckLimitReached: suspend

8.2.18.4 Configuration Options

name
The name of the service - used in the API calls. If multiple CfdpServices are used, this has to contain
a different value for each service. By default it is "CfdpService".

inStream (string)
The name of the stream where the CFDP PDUs are read from. Default: cfdp_in

outStream (string)
The name of the stream where the CFDP PDUs are written. Default: cfdp_out

incomingBucket (string)
The name of the bucket where the CFDP incoming files are saved if no specific ones are defined per
local or remote entity. Default: cfdpDown

allowRemoteProvidedBucket (boolean)
Enable setting the bucket for incoming remote files with the bucketName:filename syntax for the
received object name. Default: false

allowRemoteProvidedSubdirectory (boolean)
Enable subdirectory comprehension from incoming remote object names containing directory delim-
iters. Be wary of directory traversal depending on the bucket type, FileSystemBucket should be
safe. Default: false

112 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/cfdp/CfdpService.html

131

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/cfdp/CfdpService.html

allowDownloadOverwrites (boolean)
Permit overwriting incoming files if their names match. If false, will append an incremented number (up
to maxExistingFileRenames) to the received file name. Default: false

maxExistingFileRenames (integer)
Maximum number appended to incoming file names in case of matching names (when
allowDownloadOverwrites is false). Default: 1000

localEntities (map)
A list of entity definitions used to give names to the local (Yamcs) entity identifiers as well as to configure
which bucket is used for storing the files received for that entity. The names can be used in the API
calls when initiating transfers. The list has to contain all identifiers which will be used by the remote
system to send files. If a PDU is received to an identifier not in this map, the PDU will be dropped and
no transaction will be started.

The bucket is optional; if missing, the file will be saved into the bucket specified for the remote entity
and if that is missing too in the general bucket configured with the incomingBucket.

remoteEntities (map)
A list of entity definitions used to give names to the remote (spacecraft) entity identifiers. The names
can be used in the API call when initiating transfers.

The list has to contain all identifiers which will be used by the remote system to send files. If a PDU is
received from an identifier not in this map, the PDU will be dropped and no transaction will be started.
The list can contain also a bucket name used if the matching local entity does not define a bucket. In
the example above if a file is downlinked having source (spacecraft) id = 7 and destination (Yamcs) id
= 12, it will end up in bucket3.

entityIdLength (integer)
The length in bytes of the entity id for the outgoing CFDP transfers. The entity id and the sequence
number represent the CFDP transaction identifier. It is encoded in the header of all the CFDP PDUs.
These lengths together with the sequenceNrLength determine the size of the PDU header:

PDU_header_size(bytes) = 4 + 2 * entityIdLength + sequenceNrLength

For the incoming transfers the remote peer specifies the lengths. Default: 2

sequenceNrLength (integer)
The length in bytes of the sequence number for the outgoing CFDP transfers. Default: 4

maxPduSize (integer)
The maximum length in bytes of the PDU is used by the sender to determine how to split the file into
segments (segment size = PDU size - header size). For the incoming transfers the peer specifies the
PDU size. Default 512

sleepBetweenPdus (integer)
The time in milliseconds used by the sender to wait in between sending two successive PDUs. This
together with the PDU determine the uplink data rate. The data rate has to match the maximum uplink
speed as well as the receiver expected data rate. No mechanism is implemented for auto-tuning the
uplink rate.

canChangePduSize (boolean)
Whether a FileTransferOption can be used to set a specific transfer's PDU size. Default: false

pduSizePredefinedValues (list)
List of predefined integer values for the PDU size option when canChangePduSize is true, shown as
a dropdown menu in the web UI.

canChangePduDelay (boolean)
Whether a FileTransferOption can be used to set a specific transfer's PDU delay (sleep between
PDUs). Default: false

pduDelayPredefinedValues (list)
List of predefined integer values for the PDU delay option when canChangePduDelay is true, shown
as a dropdown menu in the web UI.

132

inactivityTimeout (integer)
The time in milliseconds used by both the sender and receiver to check for inactivity. The timer is active
on the receiver until EOF has been received and on class 2 sender after EOF has been sent (while
waiting for the Finished PDU). If the timer expires, the InactivityDetected event will be triggered and
the transaction may be cancelled or suspended (depending on the configuration of the fault handler for
InactivityDetected event).

Default: 10000 (10 seconds).

eofAckTimeout (integer)
Valid for class 2 transfers; the time in milliseconds used by the sender to wait for the EOF PDU ac-
knowledgment. The sender sends the EOF PDU to indicate that it has completed transmitting the file.
It expects to receive an acknowledgement indicating the reception of the EOF PDU (not of the file!,
the Finished PDU is used for that). The EOF PDU is retransmitted if no acknowledgment has been
received in this time.

Default: 3000 (3 seconds).

eofAckLimit (integer)
Valid for class 2 transfers; the number of times to retry sending the EOF PDU before declaring a fault.
Zero means that only one PDU will be sent (no retry). Negative value means no limit. Default: 5.

finAckTimeout (integer)
The time in milliseconds used by the receiver to wait for the FIN PDU acknowledgment. The receiver
sends the Finished PDU to indicate that the file has been received or that a fault has been encountered.
The receiver expects the sender to acknowledge reception of this PDU and will retransmit the PDU if
no acknowledgment has been received in this time.

Default: 10000 (10 seconds)

finAckLimit (integer)
The number of times to retry sending the Finished PDU before declaring a fault. Zero means that only
one PDU will be sent (no retry). Negative value means no limit. Default: 5.

immediateNak (boolean)
Valid for class 2 transfers; if true, the receiver will send NAK PDUs as soon as a missing segment
is detected. The NAK PDU contains the list of segments that are missing at the receiver side. If the
EOF PDU has not been received, the NAK PDU covers only the segments missing up to the last one
received.

If this parameter is false, the receiver will only send NAK PDUs after the EOF PDU has been received.
In this case the NAK PDU will contain all the missing segments. Default: true

nakTimeout (integer)
Valid for class 2 transfers; used by the receiver as the time interval between two successive NAK PDUs,
assuming the data has not been recovered.

Default: 5000

nakLimit (integer)
Valid for class 2 transfers; the number of times to send a NAK PDU with no data recovered before
declaring a fault. A value of 1 means that one NAK is sent and if no data is recovered within the
nakTimeout milliseconds, a fault will be declared. Zero or negative value means no limit.

Default: -1

senderFaultHandlers (map)
A definition of the actions to be taken when the sender encounters different faults. The definitions are
in the form of conditionCode -> action map.

The possible condition codes are: AckLimitReached, KeepAliveLimitReached,
InvalidTransmissionMode, FilestoreRejection, FileChecksumFailure, FileSizeError,
NakLimitReached, InactivityDetected, InvalidFileStructure, CheckLimitReached and
UnsupportedChecksum.

133

The possible actions are: suspend, cancel or abandon. Suspend means the transfer will be suspended
and can be resumed later (for example an ack limit reached may be caused by the lost of communication
with the spacecraft and the transfer can be resumed when the communication is established again).
Cancel means that the remote peer is notified that the transaction is canceled. Abandon means to
abort the transaction without notifying the peer.

Note that the error can be generated locally or received from the peer in a FIN PDU.

receiverFaultHandlers (map)
Similar with senderFaultHandlers but applies when the service works as Receiver (i.e. for down-
links).

maxNumPendingDownloads (integer)
The maximum number of allowed concurrent downloads. If this limit is reached, any PDU that would
start a new download is dropped and an event message generated. Default: 100

maxNumPendingUploads (integer)
The maximum number of allowed concurrent uploads (including download requests and directory listing
requests). If this limit is reached, the new uploads are queued. Default: 10

directoryTerminators (list)
When starting an upload to a directory (folder), the CFDP service will append the object name to the
directory name. To know if the destination is a folder (and not a file), the end character is compared
with the terminators in this list.

This is also being used for the directory listing parsing if not specified in its options. Default: ["/",
":", "\\"]

hasDownloadCapability (boolean)
Whether this CFDP service is able to download remote files. Default: true

hasFileListingCapability (boolean)
Whether this CFDP service is able to request a file list of a remote directory. Default: true

fileListingServiceClassName (string)
Class of the directory listing service to use (see File listing service (page 135)) to retrieve file lists.
Default: org.yamcs.cfdp.CfdpService (i.e. this very instance of the service).

fileListingServiceArgs (map)
Arguments to the FileListingService used (depends on implementation).

automaticDirectoryListingReloads (boolean)
Whether the CFDP Service should automatically try to send a directory listing request when a client
fetches a file listing. Default: false

fileListingParserClassName (string)
Class for parsing the CFDP directory listing response files. Default: org.yamcs.filetransfer.
BasicListingParser

fileListingParserArgs (map)
Arguments for the FileListingParser used (depends on implementation).

allowConcurrentFileOverwrites (boolean)
If this option is true, when starting an upload, the CFDP service verifies if an upload with the same des-
tination filename is ongoing or queued and will raise an error. This is done in order to avoid overwriting
the same destination file in case multiple files are uploaded from the yamcs-web. Default: true

pendingAfterCompletion (integer)
Number of milliseconds to keep the incoming transaction in memory after completion. During this time,
the newly received EOF PDUs belonging to the transaction are still answered. All the other PDUs
belonging to the transaction are ignored. Default: 600000 (10 minutes). Consequentially if a new
transfer would start with the same id (for example following an on-board computer reboot), the transfer
will not be recognized as new before this timer has expired.

134

8.2.19 File listing service

This service provides an interface for retrieving and saving the list of files of a certain remote directory.

This may be coupled with the file transfer services, such as the CFDP service (page 128) -- which implements
it --, to provide remote directory listing capabilities.

Implementing classes may make use of a org.yamcs.filetransfer.FileListingParser113 in order to parse a pro-
vided file listing according to a certain specification (currently org.yamcs.filetransfer.BasicListingParser114 and
org.yamcs.filetransfer.CsvListingParser115 exist).

8.2.19.1 Class Name

org.yamcs.filetransfer.FileListingService116

8.2.19.2 Configuration

This service is defined in etc/yamcs.instance.yaml but its configuration is implementation specific. Here
is an example of it being parametrised inside a file transfer service with a set file listing parser:

services:
- class: org.yamcs.filetransfer.MyFileTransferService
name: my-file-transfer
args:

fileListingServiceClassName: org.yamcs.filetransfer.MyFileListingService
fileListingServiceArgs:

automaticDirectoryListingReloads: false
fileListingParserClassName: org.yamcs.filetransfer.BasicListingParser
fileListingParserArgs:

directoryTerminators: ["/"]

8.2.19.3 Configuration Options

The interface has no common parameters but these may be of use by certain implementations:

fileListingParserClassName
Class to use to parse the file listing data.

fileListingParserArgs
Arguments to pass to the FileListingParser used.

The implementation specific parameters (and defaults) can be found in their respective class:

• CFDP service (page 128)

8.2.19.4 Parser Configuration Options

Each implementation of the file listing parsers have their own parameters.

8.2.19.4.1 BasicListingParser The BasicListingParser parses the file listing from a linebreak separated
list of filenames. Directories are detected by checking whether the file name ends with a directory terminator.

removePrependingRemotePath (boolean)
Whether the filenames in the file listing contain the remote path as a prefix. Default: true

113 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/filetransfer/FileListingParser.html
114 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/filetransfer/BasicListingParser.html
115 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/filetransfer/CsvListingParser.html
116 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/filetransfer/FileListingService.html

135

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/filetransfer/FileListingParser.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/filetransfer/BasicListingParser.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/filetransfer/CsvListingParser.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/filetransfer/FileListingService.html

directoryTerminators (list)
Directory terminators, used to determine whether a file name corresponds to a directory. Parsing will
remove all prepending and ending directory terminators. Default: ["/"]

8.2.19.4.2 CsvListingParser The CsvListingParser parses the file listing from a Comma Separated Value
text, with each line representing a file and each column one of its properties. Timestamps can be parsed as
numbers or as strings in the ISO format.

useCsvHeader (boolean)
Whether the parser should read the header of the CSV to determine what value goes to which property.
Default: false

protobufColumnNumberMapping (map)
Mapping of the RemoteFile protobuf field names to the column number of the CSV (not used if useCsv-
Header is true). Default: Column numbers are the same as the protobuf's (same order of fields)

headerProtobufMapping (map)
Mapping of the CSV column names in the header (when useCsvHeader is true) to the protobuf fields
names of RemoteFile. Default: Same names as the protobuf fields

timestampMultiplier (float)
If timestamps are parsed as numbers, the multiplier to use to get the result in milliseconds. Default:
1000

8.2.20 CFS Event Decoder

Decodes cFS117 (Core Flight System) events. This service translates binary cFS telemetry packets into
Yamcs events.

The packets are filtered by message id (first 2 bytes of the header).

The structure of the event packets is as defined in the CFE_EVS_LongEventTlm_Payload struct118. The
structure had different names in older versions of cFS.

The field EventType is used to derive the event severity:

• value 3 is considered severity ERROR

• value 4 is considered severity CRITICAL

• all the other values are considered severity INFO

8.2.20.1 Class Name

org.yamcs.tctm.cfs.CfsEventDecoder119

8.2.20.2 Configuration

This service is defined in etc/yamcs.instance.yaml. Example:

services:
- class: org.yamcs.tctm.cfs.CfsEventDecoder
args:
msgIds: [0x0808]
byteOrder: BIG_ENDIAN
charset: US-ASCII
appNameMax: 20

(continues on next page)

117 https://cfs.gsfc.nasa.gov/
118 https://github.com/nasa/cFE/blob/main/fsw/cfe-core/src/inc/cfe_evs_msg.h#L1235
119 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/cfs/CfsEventDecoder.html

136

https://cfs.gsfc.nasa.gov/
https://github.com/nasa/cFE/blob/main/fsw/cfe-core/src/inc/cfe_evs_msg.h#L1235
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/tctm/cfs/CfsEventDecoder.html

(continued from previous page)

eventMsgMax: 122
streams:
- tm_realtime

8.2.20.3 Configuration Options

msgIds ([integer])
The message ids that will be considered as events. This argument is required.

byteOrder (string):
The byte order of the event telemetry packet. Default:BIG_ENDIAN

charset (string):
The charset used to decode the text string. Default: US-ASCII

appNameMax (integer):
The size of the app name in bytes. Default: 20

eventMsgMax (integer):
The size of the event message string in bytes. Default: 122

streams ([string]):
The streams to process for events. Not required. If no stream is provided, all telemetry streams of type
tm are used (these are configured in the instance configuration file under the streamConfig section).

8.2.21 Alarm Mirroring

Mirrors alarms. Works in conjunction with the replication slave (page 127) to mirror alarms from a replication
master.

It works by monitoring the streams of type parameterAlarm and eventAlarm (usually these are
alarms_realtime` and event_alarms_realtime` respectively). These streams have to be configured for repli-
cation. Since information on these streams is only sent when an alarm is created or updated, the service
maintains its own database of alarms. At startup, it loads alarms triggered within the last 30 days.

Please see the replication1 example on how this service is configured to mirror alarms from node1 to node2.
Note in the processor.yaml that node2 uses a processor without the usual alarm servers configured.

8.2.21.1 Class Name

org.yamcs.alarms.AlarmMirrorService120

8.2.21.2 Configuration

This service is defined in etc/yamcs.instance.yaml. Example:

services:
- class: org.yamcs.alarms.AlarmMirrorService
args:

alarmLoadDays: 30

120 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/alarms/AlarmMirrorService.html

137

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/alarms/AlarmMirrorService.html

8.2.21.3 Configuration Options

alarmLoadDays (float)
Specifies the number of days' worth of alarms to load at startup. This parameter determines the time
range based on the alarm's trigger time (i.e., the moment the alarm was triggered). Setting a negative
value, disables loading alarms from the database.

Default: 30

138

9. Security

Yamcs includes a security subsystem which allows authenticating and authorizing users. Authentication is
the act of identifying the user, whereas authorization involves determining what privileges this user has.

Once authorized, the user may be assigned one or more privileges that determine what actions the user can
perform. Yamcs distinguishes between system privileges and object privileges.

9.1 Configuration

The security system is configured in the file etc/security.yaml. Example:

enabled: true
authModules:

- class: org.yamcs.security.LdapAuthModule
args:

...

This requires that all login attempts are validated against an external LDAP server.

These options are supported:

authModules (list of maps)
List of AuthModules that participate in the login process. Each AuthModule may support custom con-
figuration options which can be defined under the args key. If empty only the internal Yamcs directory
is used as a source of users and roles.

blockUnknownUsers (boolean)
Use this if you need fine control over who can access Yamcs. Successful login attempts from users
that were not yet known by Yamcs will be blocked by default. A privileged user may unblock them. The
typical use case is when Yamcs uses an external identity provider that allows more users than really
should be allowed access to Yamcs.

Default: false

enabled (boolean)
Control whether authentication is enforced.

Default: true if etc/security.yaml is present, false otherwise.

guest (map)
Overrides the user properties of the guest user. This user is used for all access when authentication is
not being enforced.

Roles

Roles are configured in the etc/roles.yaml. This file defines which privileges belong to which roles. Ex-
ample:

139

Operator:
ReadParameter: [".*"]
WriteParameter: []
ReadPacket: [".*"]
Command: [".*"]
CommandHistory: [".*"]
System:
- ControlProcessor
- ModifyCommandHistory
- ControlCommandQueue
- GetMissionDatabase
- ControlAlarms
- ControlArchiving

This example specifies one role Operator. It also demonstrates the use of regular expressions to grant a set
of object privileges.

System privileges must be defined under the key System. System privileges may not use regular expressions.

9.2 System Privileges

A system privilege is the right to perform a particular action or to perform an action on any object of a
particular type.

ControlProcessor
Allows to control any processor.

CreateInstances
Allows to create instances.

ModifyCommandHistory
Allows to modify command history.

ControlCommandClearances
Allows to clear users for commanding.

ControlCommandQueue
Allows to manage command queues.

CommandOptions
Allows specifying command options (extra attributes in the command history, disable/modify verifiers,
stream selection).

GetMissionDatabase
Allows to read Mission Database definitions.

ChangeMissionDatabase
Allows online changes to Mission Database definitions.

ReadAlarms
Allows to read alarms.

ControlAlarms
Allows to manage alarms.

ReadActivities
Allows to read activities.

ControlActivities
Allows to manage activities.

ControlArchiving
Allows to manage archiving properties of Yamcs.

ReadLinks
Allows to read link state.

140

ControlLinks
Allows to control the lifecycle of any link.

ControlServices
Allows to manage the lifecycle of services.

ManageParameterLists
Allows to manage the definition of parameter lists.

ManageAnyBucket
Provides full control over any bucket (page 59) (including user buckets).

A typical installation includes at least the buckets displays and stacks.

ReadEvents
Allows to read any event.

WriteEvents
Allows to manually create events.

WriteTables
Allows to manually add records to tables.

ReadTables
Allows to read tables.

ReadTimeline
Allows to view the timeline.

ControlTimeline
Allows to modify the timeline.

ControlAccess
Allows to control access (users, groups, roles, ...)

ReadSystemInfo
Allows to view system information (OS (Operating System), JVM, threads, replication, ...)

ControlFileTransfers
Allows to create file transfers.

ReadFileTransfers
Allows read access to file transfer information.

Note: Yamcs plugins may support additional system privileges.

For example, the yamcs-web plugin uses the following privilege to control access to the Admin Area: web.
AccessAdminArea

9.3 Object Privileges

An object privilege is the right to perform a particular action on an object. The object is assumed to be
identifiable by a single string. The object may also be expressed as a regular expression, in which case
Yamcs will perform pattern matching when doing authorization checks.

Command
Allows to issue a specific command.

CommandHistory
Allow access to the command history of a specific command.

ManageBucket
Allow control over a specific bucket (page 59).

141

A typical installation includes at least the buckets displays and stacks.

ReadAlgorithm
Allow to read a specific algorithm.

ReadBucket
Allow readonly access to a specific bucket (page 59).

A typical installation includes at least the buckets displays and stacks.

ReadPacket
Allow to read a specific packet.

ReadParameter
Allow to read a specific parameter.

Stream
Allow to read and emit to a specific stream.

WriteParameter
Allows to set the value of a specific parameter.

Note: Yamcs plugins may support additional object privileges.

9.4 Superuser

A user may have the attribute superuser. Such a user is not subject to privilege checking. Any check of any
kind will automatically pass. An example of such a user is the System user which is used internally by Yamcs
on some actions that cannot be tied to a specific user. The superuser attribute may also be assigned to end
users if the AuthModule supports it.

9.5 AuthModules

9.5.1 LDAP AuthModule

The LDAP AuthModule supports authentication of users via the LDAP protocol.

It first searches for the distinguished name that matches a submitted username, and then attempts a bind
using the submitted password.

This module can also be chained to the Kerberos AuthModule (page 145) or SPNEGO AuthModule
(page 147) modules in order to add user attributes and roles to a user that logged in via Kerberos or Kerberos
SPNEGO.

9.5.1.1 Class Name

org.yamcs.security.LdapAuthModule121

9.5.1.2 Configuration Options

host (string)
Required. The LDAP host

121 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/security/LdapAuthModule.html

142

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/security/LdapAuthModule.html

userBase (string)
Required. The search base for users.

Example: ou=people,dc=example,dc=com

port (integer)
The LDAP port. Default: 389 for unencrypted connections, otherwise 636.

tls (boolean)
If true the LDAP connection will be encrypted. Default: false

user (string)
The bind DN that Yamcs should use to search user properties. If unspecified Yamcs will attempt to do
an anonymous bind. On many LDAP installations an anonymous bind does not give sufficient access
to user information.

password (string)
The password matching the bind DN.

attributes (map)
Configure which LDAP attributes are to be considered. If unset, Yamcs uses defaults that work out of
the box with many LDAP installations.

userFilter (string)
User search filter. If unspecified, the default is to search by the account name attribute. See RFC
4515122 for filter syntax.

The filter should include at least one occurrence of the {0} character sequence, which upon login is
replaced with the attempted username.

Example: (&(sAMAccountName={0})(memberOf=cn=developers,ou=groups,dc=example,
dc=com))

groupMappings (list of maps)
Manage mappings from LDAP groups to Yamcs roles.

This makes use of the memberOf attribute in the user entry. If the LDAP directory does not sup-
port the memberOf attribute, you can instead configure the options groupBase, groupFilter and
groupFilterUserAttribute.

requiredIfKerberos (boolean)
If true this module performs an LDAP lookup on users that were identified by Kerberos AuthModule
(page 145) or SPNEGO AuthModule (page 147). If the lookup fails, the login process is aborted.

If the LDAP directory does not support memberOf, you can configure group lookup with the following configu-
ration options:

groupBase (string or list of strings)
DNs to search through for finding memberships.

Example: ou=groups,dc=example,dc=com

groupFilter (string)
Search filter to find group entries for the user. The filter should include at least one occurrence of
the {0} character sequence, which gets replaced with the value of the groupFilterUserAttribute
configuration option.

Example: (member={0})

groupFilterUserAttribute (string)
Attribute from the user entry to use in the groupFilter lookup.

Example: dn

122 https://datatracker.ietf.org/doc/html/rfc4515

143

https://datatracker.ietf.org/doc/html/rfc4515
https://datatracker.ietf.org/doc/html/rfc4515

9.5.1.2.1 Attributes sub-configuration

name (string)
The name of the account name attribute. This is used to search a DN within the userBase as well as to
map to the Yamcs account name. For Active Directory this should usually be set to sAMAccountName.

Default: uid.

email (string or string[])
The name of the email attribute. If multiples are defined, they are tried in order. Default: [mail,
email, userPrincipalName].

displayName (string or string[])
The name of the display name attribute. If multiples are defined, they are tried in order. Default: cn.

9.5.1.2.2 Group Mapping sub-configuration

dn (string)
Required. DN of an LDAP group.

role (string)
Name of a Yamcs role to assign to this user.

superuser (boolean)
If true, grant this user the superuser attribute, implying all privileges. Default: false.

9.5.2 YAML AuthModule

This AuthModule supports authentication and authorization of users via YAML files available directly in the
Yamcs configuration folder.

9.5.2.1 Class Name

org.yamcs.security.YamlAuthModule123

9.5.2.2 Configuration Options

hasher (string)
Hasher class that can be used to verify if a password is correct without actually storing the password.
When omitted, passwords in etc/users.yaml should be defined in clear text. Possible values are:

• org.yamcs.security.PBKDF2PasswordHasher124

required (boolean)
When set to true the YAML AuthModule will veto the login process if it does not know the user. This
may be of interest in situations where the YAML AuthModule does not authenticate the user, yet still
some control is required via configuration files over which users can login. Default is false.

The YAML AuthModule reads further configuration from a YAML file: etc/users.yaml.

9.5.2.3 users.yaml

This file defines users, passwords and user roles.

123 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/security/YamlAuthModule.html
124 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/security/PBKDF2PasswordHasher.html

144

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/security/YamlAuthModule.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/security/PBKDF2PasswordHasher.html

admin:
password: somepassword
superuser: true

someuser:
displayName: Some User
password: somepassword
roles: [Operator]

The password key may be omitted if the YAML AuthModule is not used for authentication.

If you do use YAML AuthModule for authentication, consider hashing the passwords for better security. Pass-
word hashes can be obtained via the command line:

yamcsadmin password-hash

This command prompts for the password and outputs a randomly salted PBKDF2 hash. This output can be
assigned to the password key, replacing the clear password.

9.5.3 Kerberos AuthModule

This AuthModule supports password-based authentication of users via an external Kerberos server.

9.5.3.1 Class Name

org.yamcs.security.KerberosAuthModule125

9.5.3.2 Configuration Options

This module reads Kerberos configuration from the Kerberos system configuration file. This is usually avail-
able at /etc/krb5.conf. If you need to override this location, you have to set a system property at JVM
level:

-Djava.security.krb5.conf=/my/custom/krb5.conf

9.5.4 Remote User AuthModule

This AuthModule supports the login of users based on a provided HTTP header containing the username.
Currently, it can only be used for API requests, and not for accessing the Yamcs web interface.

Warning: When using this module you must protect Yamcs against spoofing attacks.

9.5.4.1 Class Name

org.yamcs.security.RemoteUserAuthModule126

125 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/security/KerberosAuthModule.html
126 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/security/RemoteUserAuthModule.html

145

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/security/KerberosAuthModule.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/security/RemoteUserAuthModule.html

9.5.4.2 Configuration Options

header (string)

Name of the HTTP request header that indicates the remotely identified user.
Default: X-REMOTE-USER

9.5.5 Single User AuthModule

This AuthModule supports authentication and authorization of a single user whose information is directly
specified in the AuthModule configuration.

9.5.5.1 Class Name

org.yamcs.security.SingleUserAuthModule127

9.5.5.2 Configuration Options

username (string)
Required. Username of the authenticated user.

password (string)
Required. Password for this user.

name (string)
Display name of the user account.

email (string)
Email address of the user account.

superuser (boolean)
If true the account has superuser privileges. Superusers are not subject to permission checks. Default:
false.

privileges (map)
Map of assigned privileges, where each entry is either:

• An object privilege, with as value a list of patterns.

• The special name System, with as value a list of system privileges.

hasher (string)
Hasher class that can be used to verify if a password is correct without actually storing the password.
When omitted, passwords in etc/users.yaml should be defined in clear text. Possible values are:

• org.yamcs.security.PBKDF2PasswordHasher128

9.5.6 IP Address AuthModule

This AuthModule supports the login of a single preconfigured user based on an authorized remote IP address.
Currently, it can only be used for API requests, and not for accessing the Yamcs web interface.

127 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/security/SingleUserAuthModule.html
128 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/security/PBKDF2PasswordHasher.html

146

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/security/SingleUserAuthModule.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/security/PBKDF2PasswordHasher.html

9.5.6.1 Class Name

org.yamcs.security.IPAddressAuthModule129

9.5.6.2 Configuration Options

address (string or list of strings)
IPv4 or IPv6 address, or a range with CIDR mask.

A list of addresses or ranges may be specified. The user is then accepted when any of the entries
matches the incoming request.

username (string)
Username of the authenticated user.

name (string)
Display name of the user account.

email (string)
Email address of the user account.

superuser (boolean)
If true the account has superuser privileges. Superusers are not subject to permission checks. Default:
false.

privileges (map)
Map of assigned privileges, where each entry is either:

• An object privilege, with as value a list of patterns.

• The special name System, with as value a list of system privileges.

9.5.6.3 Example

AuthModules are configured in the file etc/security.yaml.

authModules:
- class: org.yamcs.security.IPAddressAuthModule
args:
address: "127.0.0.1"
username: ipv4_user

- class: org.yamcs.security.IPAddressAuthModule
args:
address: "::1"
username: ipv6_user

- class: org.yamcs.security.IPAddressAuthModule
args:
address:
- "192.168.0.0/16"
- "127.0.0.1"

username: testuser

9.5.7 SPNEGO AuthModule

This AuthModule supports Single Sign On authentication of users via SPNEGO. This is usually stacked
together with the Kerberos AuthModule (page 145) module in case the single sign on does not work, or in
case Yamcs is accessed from a non-web context.

129 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/security/IPAddressAuthModule.html

147

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/security/IPAddressAuthModule.html

9.5.7.1 Class Name

org.yamcs.security.SpnegoAuthModule130

9.5.7.2 Configuration Options

principal (string)

Required. Kerberos Service Principal of the HTTP service that matches the external address of
Yamcs.
This should be in the format HTTP/<host>.<domain>@<realm>

keytab (string)

Required. Path to the keytab file matching the principal.

stripRealm (boolean)

Whether to strip the realm from the username (e.g. user@<realm> becomes just user).
Default: true.

This module reads Kerberos configuration from the Kerberos system configuration file. This is usually avail-
able at /etc/krb5.conf. If you need to override this location, you have to set a system property at JVM
level:

-Djava.security.krb5.conf=/my/custom/krb5.conf

9.5.8 OpenID Connect AuthModule

This AuthModule supports federated identity by redirecting web application users to the authorization (or
consent) page of an OpenID Connect server. This allows for remote management of users and could be
used to perform cross-domain Single Sign On with multiple other browser applications.

This AuthModule is used for authentication only. It does not directly support importing roles. But you could
do so by extending this module.

If the token endpoint of the OpenID server provides a refresh token, then Yamcs will refresh the access token
whenever it has expired.

If the token endpoint of the OpenID server does not provide a refresh token, Yamcs will only interact once
with the OpenID server (for the initial auth), and afterwards no longer.

9.5.8.1 Class Name

org.yamcs.security.OpenIDAuthModule131

9.5.8.2 Configuration Options

authorizationEndpoint (string)
Required. The URL of the OpenID server page where to redirect users for authorization and/or con-
sent.

This URL must be accessible by clients.

130 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/security/SpnegoAuthModule.html
131 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/security/OpenIDAuthModule.html

148

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/security/SpnegoAuthModule.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/security/OpenIDAuthModule.html

tokenEndpoint (string)
Required. The URL of the OpenID server page where OAuth2 tokens can be retrieved.

This URL must be accessible by Yamcs itself.

clientId (string)
Required. An identifier that identifies your Yamcs server installation as a client against the Open ID
server. This should be set up using the configuration tools of the Open ID server.

clientSecret (string)
Required. The secret matching with the clientId.

scope (string)
Space-separated scope to be used in authorization request. Default: openid email profile

attributes (map)
Configure how claims are mapped to Yamcs attributes. If unset, Yamcs uses defaults that work out of
the box against some common OpenID Connect providers.

verifyTls (boolean)
If false, disable TLS and hostname verification when Yamcs uses the token endpoint. Default: true.

9.5.8.2.1 Attributes sub-configuration

name (string or string[])
The claim that matches with the account name. This is used internally by Yamcs to map the user to
a single identity. If multiples are defined, they are tried in order. Default: [preferred_username,
nickname, email].

email (string or string[])
The claim that matches with the email. If multiples are defined, they are tried in order. Default: email.

displayName (string or string[])
The claim that matches with the display name. If multiples are defined, they are tried in order. Default:
name.

9.5.8.3 Back-channel Logout

This AuthModule adds an endpoint /openid/backchannel-logout to Yamcs that may be called by the
OpenID server when a user is to be logged out. This is called back-channel because the communication is
directly from the Open ID server to Yamcs, rather than via the user agent. If not used, a logout on the Open
ID server is only detected when the next token refresh is attempted.

9.5.8.4 Note to third-party developers

This AuthModule implements the conventions for server-side web applications. In other words: the id_token
is retrieved and decoded on Yamcs server only. Before Yamcs can obtain the id_token it expects to be given
some information by the integrating application.

The source code of the Yamcs web interface serves as the best reference. But generally it works like this:

1. The browser application retrieves OpenID Connect options on the /auth endpoint. This includes the
client_id, the authorizationEndpoint and the scope. Other configuration options are reserved for
server use.

2. The browser application uses the authorizationEndpoint to redirect the browser to a login or con-
sent page of the upstream OIDC server. The following is an example:

window.location.href = "https://oidc.example.com" +
"?client_id=encodeURIComponent(CLIENT_ID)" +
"&state=encodeURIComponent(STATE)" +
"&response_mode=query" +

(continues on next page)

149

(continued from previous page)

"&response_type=code" +
"&scope=openid+email+profile" +
"&redirect_uri=encodeURIComponent(REDIRECT_URI)";

STATE can be anything, and is typically used for encoding information about the original request such
that when the authentication is done, the user is redirected back to the original attempted route.

REDIRECT_URI is the path where OIDC will redirect back the user after the login or consent is confirmed.

3. When OIDC redirects the user's browser back to REDIRECT_URI, extract the code and state from
the query params.

4. Use this upstream code to make an encoded string like this:

var codeForYamcs = "oidc " + JWT;

Here, JWT represent a JSON Web Token that stringifies a payload containing at least these properties:

{
"redirect_uri": REDIRECT_URI,
"code": UPSTREAM_CODE,

}

5. The string value of the variable codeForYamcs can be used against the Yamcs /auth endpoint using
grant_type=authorization_code for converting it to a standard Yamcs-level access token.

In the background what happens is that Yamcs will use the upstream code and exchange it against
OIDC for an id_token which tells Yamcs what the username, email and display name are for the au-
thenticated user. The redirect_uri property is not actually used anymore, but most OIDC servers will
check on this being specified and matching the original redirect_uri used for obtaining the upstream
code.

The security subsystem is modular by design and allows combining different AuthModules together. This
allows for scenarios where for example you want to authenticate via LDAP, but determine privileges via YAML
files.

The default set of AuthModules include:

LDAP AuthModule (page 142)
Authenticates against an LDAP directory. Also capable of mapping LDAP groups to Yamcs roles.

YAML AuthModule (page 144)
Reads YAML files to verify the credentials of the user, or assign privileges.

Kerberos AuthModule (page 145)
Supports authenticating against a Kerberos server.

Remote User AuthModule (page 145)
Supports authentication based on a custom HTTP header.

Single User AuthModule (page 146)
Read AuthModule configuration to verify the credentials of a single user.

IP Address AuthModule (page 146)
Supports authentication based on the remote IP address.

SPNEGO AuthModule (page 147)
Supports authenticating against a Kerberos server using Single Sign On from a web context.

OpenID Connect AuthModule (page 148)
Supports authenticating against an OpenID Connect server.

AuthModules have an order. When a login attempt is made, AuthModules are iterated a first time in this order.
Each AuthModule is asked if it can authenticate with the provided credentials. The first matching AuthModule
contributes the user principal. A second iteration is done to then contribute privileges to the identified user.
During both iterations, AuthModules reserve the right to halt the global login process for any reason.

150

Some AuthModules are only useful for specific flows. For example OpenID Connect (which in a nutshell
redirects to an external login form) would need to be accompanied with other AuthModules in case not all
target clients are browser-based.

151

152

10. Web Interface

Yamcs includes a web interface which provides quick access and control over many of its features. The web
interface runs on port 8090 and integrates with the security system of Yamcs.

All pages are aware of the privileges of the logged in user and will hide user interface elements that the user
has no permission for.

Most pages (the homepage excluding) show data specific to a particular Yamcs instance. The current in-
stance is always indicated in the top bar. To switch to a different location either return to the homepage, or
use the quick-switch dialog in the top bar. When switching instances the user is always redirected to the
default page for that instance.

10.1 Configuration

Web options are configured in the file etc/yamcs.yaml.

yamcs-web:
tag: Example Mission
logo: etc/logo.png
siteLinks:
- label: Wiki
url: https://example.com/wiki
external: true

Some options can also be configured at instance-level in the file etc/yamcs.instance.yaml.

yamcs-web:
displayBucket: customBucket
stackBucket: customBucket

Contents

• Global Configuration Options (page 153)

• Instance Configuration Options (page 157)

10.1.1 Global Configuration Options

tag (string)

Short descriptor string of this Yamcs server. If present this is shown in the top bar. The primary
motivation for this option is to be able to distinguish between multiple Yamcs servers in distributed
deployments.

logo (string)

Filesystem path to an image to be shown in the bottom of the left sidebar. Images larger than the width
of the sidebar (currently 250px) are resized to fit.

153

extraHeaderHTML (string)

Additional HTML to be included at the end of the <head></head> section.

displayBucket (string)

Bucket where to find display resources.

Default: displays

stackBucket (string)

Bucket where to find stacks.

Default: stacks

staticRoot (string)

Filesystem path where to locate the web files for the Yamcs Web Interface (.js, .css, .html, ...). If not
specified, Yamcs will search the classpath for these resources (preferred).

It should only be necessary to use this option when doing development work on the Yamcs Web Inter-
face. It allows to run npm in watch mode for a save-and-refresh development cycle.

twoStageCommanding (boolean)

Controls whether to protect commanding from from accidental clicks. If true issuing a command will
require two clicks at least (arm-and-issue).

This feature is primarily intended for an operational setting.

Default: false

collapseInitializedArguments (boolean)

Controls the display of argument fields of a command form. If true, arguments with an initial value are
collapsed by default.

Default: true

commandExports (boolean)

Controls whether the button to generate an offline command report is shown.

Default: true

disableLoginForm (boolean)

Set to true if the login form should never be shown.

For example because access should exclusively occur through an external identity provider.

Default: false

logoutRedirectUrl (string)

The URL to redirect to after logging out of Yamcs. If unset, users are redirected to the built-in login
page.

utc (boolean)

Format time in UTC. If false, format in browser local time.

This setting also affects time inputs.

Default: true

154

cookie (map)

Configure cookies planted by Yamcs Web.

These values should be configured when hardening your deployment.

See "Cookie sub-configuration" section below.

tc (boolean)

Controls whether commmanding functionalities are shown.

Default: true

tmArchive (boolean)

Controls whether functionalities related to TM archiving are shown.

Default: true

siteLinks (list of maps)

Configure custom site links that can be visited from the website header.

See "Site Links sub-configuration" section below.

events (map)

Configure event-related properties.

See "Events sub-configuration" section below.

opi (map)

Customize OPI display rendering.

See "OPI sub-configuration" section below.

Cookie sub-configuration

secure (boolean)

Add a secure attribute

This should be set to true when Yamcs is served over HTTPS

Default: false

sameSite (string)

Configure the SameSite attribute

This should be set to strict when Yamcs is served over HTTPS

One of lax, strict or none

Default: lax

Site Links sub-configuration

url (string)

Required. Site URL

155

label (string)

Required. Descriptive name of this URL.

external (boolean)

Mark this link as external. External links are opened in a new tab.

Default: false

Events sub-configuration

extraColumns (list of maps)

Additional event columns specific to a deployment.

See "Extra Columns sub-configuration" section below.

Extra Columns sub-configuration

id (string)

Required. Identifier of this column. This corresponds with a key in the extra map of an event.

label (string)

Required. Descriptive name of this column.

visible (boolean)

Whether this column is visible by default.

Default: true

alwaysVisible (boolean)

Whether this column always visible.

If false, the user may choose to hide it.

Default: false

after (string)

Required. Identifier of the column after which to position this column.

One of severity, gentime, message, source, type, rectime or seqNumber

OPI sub-configuration

disconnectedColor (string)

CSS color string for the Disconnected color. Default is pink.

Default: #a020f0

invalidColor (string)

CSS color string for the Invalid color. Default is purple.

Default: #ff00ff

majorColor (string)

CSS color string for the Major color. Default is red.

Default: #ff0000

156

minorColor (string)

CSS color string for the Minor color. Default is orange.

Default: #ff8000

10.1.2 Instance Configuration Options

displayBucket (string)

Bucket where to find display resources.

If unset, defaults to the display bucket specified globally

stackBucket (string)

Bucket where to find stacks.

If unset, defaults to the stack bucket specified globally

parameterArchive (string)

Controls whether the Parameter Archive is used. This is a secondary storage structure optimized for
parameter querying.

When disabled, parameter history is retrieved by re-extracting stored packets on the fly.

The default value of auto will use the Parameter Archive, if it is available for the instance.

If tmArchive is false, this option has no effect.

This option does not currently apply to CSV exports which always do replays (shall be addressed in a
future version of Yamcs).

One of enabled, disabled or auto

Default: auto

10.2 Links

Shows a live view of the data links for this instance. Link can be managed directly from this page.

10.3 Algorithms

The Algorithms page provides access to the algorithms defined for the current Yamcs instance.

Each algorithm can be selected to view general information, input parameters, output parameters, triggers,
and edit the algorithm code.

157

10.4 Telemetry

The Telemetry group within the Yamcs web interface provides access to monitoring-related pages.

10.4.1 Packets

This page lists all received packets. The list needs to be manually refreshed with the circular arrow icon.
Details appear when clicking on a packet. Packets can be extracted into their parameters by clicking Extract.
Packet Hex or Binary can be copied, or raw telemetry can be downloaded by clicking on the 3-dots icon.

10.4.2 Parameters

This page shows all parameters. Each parameter can be accessed individually to see the latest value (Sum-
mary tab), archived values (Historical Data tab) or the alarms related to this parameter (Alarm History tab).
Numeric parameters can be charted (Chart tab). Historical data for the selected parameter can be down-
loaded by clicking Export CSV on the Historical Data tab, and picking a range, delimiter and interval.

10.4.3 Parameter Lists

This page allows users to group parameters together into lists. New lists can be created with the Create List
button. The list name for the list, a description and add the parameters by parameter names or with glob
patterns. Parameter lists can be selected to show latest value (Realtime tab) or archived values (Historical
Data tab). Historical data for the selected list can be downloaded by clicking Export CSV on the Historical
Data tab, and picking a range, delimiter and interval.

10.4.4 Displays

This page shows the list of displays or display resources that are known by Yamcs Server for the selected
instance. Displays are stored within the "displays" storage bucket. Yamcs Studio displays (.opi) can be
visualized in the Yamcs web interface. They can be uploaded with the Upload Files button. Additionally,
Parameter Tables (.par) can be created, by clicking the Create Display button, entering a name and adding
parameters. Items in the Displays page list can be renamed, downloaded or deleted. Clicking on a display
file opens the display. If there is incoming telemetry, it will be received by the opened display file and the
display will update accordingly.

Note that only some display types are supported by the Yamcs web interface. The following provides an
overview of the current state:

Extension Display Type View Edit

opi Yamcs Studio displays Basics

No plans to support
(use Yamcs studio)

par Parameter tables Full support Full support

In addition there is file preview support for the following display resources:

158

Extension Resource Type View Edit

png, gif, bmp, jpg, jpeg Image Full support No plans to support

js Script file Full support Planned

Any other file is displayed in a basic text viewer.

10.4.5 Replaying telemetry

Telemetry replays can be triggered from any instance-scoped page by clicking the mission time in the page
toolbar and selecting Replay from date.

In the dialog that opens, you can choose a replay range. Yamcs will start a replay processor which will run in
parallel to the realtime processor.

The UI will switch to this replay processor, causing pages that normally would show realtime telemetry, to
show replayed telemetry instead.

10.5 Events

This section provides a view on Yamcs events. By default only the latest events within the last hour get
shown. The view offers ample filter options to change which events are shown. The table is paged to prevent
overloading the browser. If you like to see beyond the current page, you can click the button 'Load More' at
the bottom of the view. Alternatively you can choose to click the 'Download Data' button at the top right. This
will trigger a download of the events in CSV format. The download will apply the same filter as what is shown
in the view.

The Events table can also monitor incoming events on the current processor. Do so by clicking the play button
in the top toolbar. You may stop the live streaming at any time by clicking the pause button.

The Events table has a severity filter. This filter allows defining the minimum severity of the event. Events
that are more severe than the selected severity will also be shown. By default the severity filter is set to the
lowest severity, Info, which means that all events will be shown.

With the right privilege, it is possible to manually post an event. You can enter an arbitrary message and
assign a severity. The time of the event will by default be set to the current time, but you can override this if
preferred. The source of an event created this way will automatically be set to User and will contain a user
attribute indicating your username.

10.6 Alarms

Shows an overview of the current alarms. Alarms indicate parameters that are out of limits.

10.7 Commanding

The Commanding group within the Yamcs web interface provides access to commanding pages.

10.7.1 Send a command

The Send a command page provides access to every command specified for the current Yamcs instance. A
command can be selected, configured, and sent now or scheduled to be sent later.

159

10.7.2 Command stack

The Command stack page allows users to create and edit command stacks. Command stacks define a
sequence of configured existing commands to be sent, with a progression rule. Progression rules combine a
condition based on the status of the previous command (Queued, Released, Sent, Completed) and a delay.
Command stacks can be sent now or scheduled to be sent later.

10.7.3 Command history

The Command history page shows the list of previously sent commands, with status information. Arguments
and return value can be displayed. A report can be viewed for each command.

10.7.4 Queues

The Queues page shows the status of command queues.

10.8 Procedures

The Procedures group within the Yamcs web interface provides access to procedural functionality.

10.8.1 Run a script

The "Run a script" page lets users execute predefined scripts. Scripts are stored under etc/scripts.

Script files may be directly executable, or be associated to another program based on its file extension.

The default associations are:

Extension Program

java java

js node

mjs node

pl perl

py python -u

rb ruby

Scripts can be selected from a drop-down. Arguments can be specified, in the format expected by the Script
runtime. Scripts can be run immediately or later. If later, they will appear on the Timeline.

Once started, the Script appears on the Activities page list. The Script Activity automatically marks itself
successful or failed based on the script exitcode (0 for success). If the script generates an output, it can be
viewed by clicking on the Script Id on the Activities page.

10.9 Activities

The Activities page shows a list of all activities that are ongoing or completed, sorted by time. Each activity on
the list shows a status icon, indicating whether the activity was/is Successful, Failed, Canceled or Ongoing.

160

When at least one activity is ongoing, a label on the Activities navigation button shows the number of ongoing
activities. Ongoing activities can be canceled from the list. An activity's ID can be clicked to view its log,
which includes the script output if the activity ran a script.

Activities can either be manual or managed by Yamcs. Ongoing manual activities on the list provide buttons
for the user to set them Successful or Failed. New manual activities starting immediately can be defined
by pressing the New activity button. New scheduled manual activities can be created from the Timeline
Chart or Timeline Items pages. New activities managed by Yamcs include scripts, which can be created and
scheduled from the Procedures Run a script page.

10.10 Timeline

The Timeline group within the Yamcs web interface provides access to the timeline functionality. Essentially,
timelines show Items on Bands as a function of time.

Bands are labeled horizontal sections spanning the whole timeline. Items are labeled sections of time which
can be displayed on Item-type Bands. Bands can be stacked vertically to create Views. Views can be
visualized on the Chart.

10.10.1 Chart

The Chart is where Views can be visualized over time. Views can be selected from the drop-down to the right
of the "Timeline Chart" title. The Items are the colored rectangles or diamonds on the Chart, located on their
horizontal Bands. A red vertical line indicates the current time. The Chart can be zoomed in and out with the
+ and - buttons or with the middle mouse wheel.

The Chart can be panned with the arrow buttons or by holding down the left mouse button. Items can be
clicked for editing. From the Chart, users can also edit the current View, add an Event- or Activity-type Item
(see Items section below for details), or take a snapshot of the Chart.

10.10.2 Views

The Views page shows the list of existing Views. From this page Views can be edited by clicking on their
label. Views can be deleted by selecting their checkbox and pressing the Delete button. New Views can be
created with the Create View button.

New Views are composed by sequentially adding Bands from the Available list to the Selected list in the
desired order. A Band can only be present once on a single View.

10.10.3 Bands

The Bands page shows the list of existing Bands. From this page Bands can be edited by clicking on their
label. Bands can be deleted by selecting their checkbox and pressing the Delete button. New Bands can be
created with the Create Band button.

Four types of Bands can be created:

• Time Ruler: displays time graduation, in a configurable timezone.

• Item Band: Band on which Items can be displayed. Dispays only items with matching Tags. The Band
defines the default style of its Items.

• Spacer: creates an empty vertical space. Height can be configured.

• Commands: shows commands issued over time.

161

10.10.4 Items

The Items page shows the list of existing Items. From this page Items can be edited by clicking on their label.
Items can be deleted by selecting their checkbox and pressing the Delete button. New Items can be created
with the Create Item button.

Two types of Items can be created:

• Event item: gets added to the list of Items.

• Activity item: gets added to the list of Items and also to the list of Activities on the Activities page. It will
trigger at the specified time, and can be set Successful or Failed on the Activities page.

Tags can be assigned to Items. Items will be displayed on Bands with matching Tags. Item start time and
duration can be configured. Items will show as rectangles on the Chart unless they have a duration of 0, in
which case they will appear as diamonds. Items can be set to override the default style specified in a Band.

Items are also automatically added to the list when:

• the user selects "Send later..." when sending a command from the "Send a command" page

• the user selects "Schedule" when running a command stack from the "Command stacks" page

• the user selects "Run later..." when running a script from the "Run a script" page

10.11 Mission database

The MDB module within the Yamcs web interface provides a set of views on the Mission Database.

The MDB Module is always visited for a specific Yamcs instance. The MDB for an instance aggregates the
content of the entire MDB loader tree for that instance.

10.11.1 Parameters

The Parameters view shows a filterable list of all parameters inside the MDB. If you are searching for a
specific parameter but don't remember the space system this views can help find it quickly.

You can navigate to the detail page of any parameter to see a quick look at its definition, and to see the
current realtime value. If the parameter has numeric values, its data can also be rendered on a chart. This
chart is updated in realtime. Finally the detail page of a parameter also has a view that allows looking at the
exact data points that have been received in a particular time range. This information is presented in a paged
view. There is a download option available for downloading data points of the selected time range as a CSV
file for offline analysis.

If the parameter is a software parameter, its value can be set via a button in the toolbar.

10.11.2 Containers

The Containers view shows a filterable list of all containers inside the MDB. The detail page allows seeing
the parameter or container entries for this container and offers navigation links for quick access.

10.11.3 Commands

The Commands view shows a filterable list of all commands inside the MDB. This also includes abstract
commands. Non-abstract commands can be issued directly from the detail page of that command. This
opens a dynamic dialog window where you can override default arguments and enter missing arguments.

162

10.11.4 Algorithms

The Algorithms view shows a filterable list of all algorithms inside the MDB. This detail page provides a quick
navigation list of all input and output parameters and shows the script for this algorithm.

10.12 Archive browser

This view allows inspecting the content of the TM Archive, as well as retrieving data as packets. Data is
grouped by packet name in bands. For each band, index blocks indicate the presence of data at a particular
time range. Note that a single index block does not necessarily mean that there was no gap in the data.
When zooming in, more gaps may appear.

The view can be panned by grabbing the canvas. For long distances you can jump to a specific location via
the Jump to... button.

This view shows the current mission time with a vertical locator.

Note: While the now locator follows mission time, the rendered blocks do not follow realtime. You can force
a refresh by panning the canvas or refreshing your browser window.

In the top toolbar there are a few actions that only become active once you make a horizontal range selection.
To make such a selection you can start a selection on the timescale band. Alternatively you may also select
a range by simply clicking an index block. Selecting a range allows you to start a replay for that range, or to
download raw packet data.

10.13 Admin Area

The Admin Area within the Yamcs web interface provides a set of administrative views on Yamcs.

It is accessible to superusers by selecting Admin Area from the app menu of the toolbar.

10.13.1 Admin Home

The Admin Area within the Yamcs web interface provides a set of administrative views on Yamcs.

It is accessible to superusers by selecting Admin Area from the app menu of the toolbar.

The initial page shows general server metrics.

Yamcs version
Version of Yamcs. Versions of the form x.y.z are production builds, whereas versions of the form
x.y.z-SNAPSHOT indicate a development build.

Build
Git reference (SHA1) uniquely identifying the source tree at the time the release was made.

Server ID
Name of this specific Yamcs installation. This name is used where Yamcs requires some kind of server
identity. For example, system parameters (= parameters generated by Yamcs itself) include the Server
ID in their name.

OS
Operating system name and version.

Architecture
Operating system architecture.

163

JVM
Java virtual machine implementation name, version and vendor.

Working directory
The working directory of the Yamcs daemon. Relative paths in configuration files are resolved against
this.

Config directory
The directory containing the configuration files (YAML and other).

Cache directory
The directory where Yamcs services may store working data.

Data directory
Directory where Yamcs databases are stored. Data is grouped by Yamcs instance, and a special
instance named _global for cross-cutting data.

Uptime
The duration that the current Yamcs process has been operational.

Load average
System load average for the last minute. The exact calculation is operating system specific, and on
some platforms is not available at all.

Available processors
The number of processors available to the Java virtual machine.

Heap memory
The amount of heap memory that is committed for the Java virtual machine to use. In parenthesis: the
actual used memory and the maximum amount of memory that can be used.

Heap memory is used for object allocation, which includes both live objects and garbage objects that
have not been collected.

Non-heap memory
The amount of non-heap memory that is committed for the Java virtual machine to use. In parenthesis:
the actual used memory and the maximum amount of memory that can be used.

Non-heap memory includes all the memory the JVM allocates for purposes other than the heap.

Thread count
Estimate of the number of active threads.

Root directories

This rubric shows information per root directory for the file systems accessible to the Java virtual machine.

Directory
Root path

Type
Representation of the type of file store.

Total space
Size of the file store.

Unallocated space
Unallocated space in the file store.

Usable space
Space on the file store that is available to the Java virtual machine.

164

10.13.2 Plugins

This page shows the currently installed Yamcs plugins, and some general metadata.

Yamcs does not enforce a plugin registration mechanism, so the information on this page is dependent on
the level of integration of used plugins.

10.13.3 Access Control

Group of administrative pages for managing users and groups.

10.13.3.1 Users

Page that lists users known to Yamcs. There are two categories of users:

Internal users
Users whose identity is managed directly by Yamcs using a password hash stored in the Yamcs
database.

External users
Users whose identity is managed by an external system, such as an LDAP server or Keycloak server.

When an external user logs in to Yamcs, that user's username and metadata of interest (display name,
email) is synced into the Yamcs database.

Note: Some installations make use of YAML AuthModule (page 144). While this uses a local etc/users.
yaml configuration file, it counts as an external user because the password verification is managed with YAML
instead of the Yamcs database.

Converting a user from external to internal

1. Open the user detail page.

2. Delete entries under the rubric External Identities.

3. It is now possible to set or change the user password.

Block a user

1. Open the user detail page, and click EDIT USER.

2. Untoggle the Active slider.

Promote a user to administrator

1. Open the user detail page, and click EDIT USER.

2. Toggle the superuser slider.

10.13.3.2 Service accounts

This page is experimental and without further documentation.

Avoid using it for now.

165

10.13.3.3 Groups

The groups page allow to group users together. Role assignment is done at either user or group level, and
so groups allow to manage role assignment without needing to manage each user individually.

10.13.3.4 Roles

This page provides a readonly view of the configured roles of your Yamcs deployment.

Roles group zero or more privileges.

10.13.4 Client Connections

This page shows current HTTP connections. Yamcs supports HTTP persistent connections (HTTP Keep-
Alive).

Id
Short channel identifier.

Protocol
HTTP protocol version. Note that Yamcs does not currently support HTTP/2 or HTTP/3.

Remote address
Client IP and port.

Read
Cumulative read bytes.

Written
Cumulative written bytes.

Rx
Read throughput in the last check interval.

Tx
Write throughput in the last check interval.

A check interval of 5 seconds is used to determine HTTP traffic metrics.

10.13.5 Services

This page shows available Yamcs services. Services add functionality to Yamcs. Yamcs comes with a default
set of services, but may be extended with plugins that deploy other services.

Services participate during start and stop of the Yamcs server.

Services are grouped by instance. A special instance _global covers global services that are not linked to a
specific Yamcs instance.

This page allows to manually start or stop services. This functionality is primarily intended for debugging or
development. In normal circumstances services are always up.

10.13.6 Processor Types

This page lists the names of preconfigured processors. These correspond with the top-level keys in the
etc/processor.yaml configuration file.

166

10.13.7 Databases

This page lists all the Yamcs databases. There is at least one database named _global for Yamcs house-
keeping, and then one database for each Yamcs instance. Databases have the same name as the instance.

By selecting a database, we can see a listing of its tables and streams, or execute manual queries in a
SQL-like language.

10.13.7.1 Tables

This page lists all the tables in a specific Yamcs database.

For each table we can see a description of its columns, and a sampling of the most recent data rows.

For more information on the standard tables, see Generic Archive (page 52).

10.13.7.2 Streams

This page lists all the streams in a specific Yamcs database.

For each stream we can see a description of its columns. We can also snoop on newly emitted tuples.

For more information on the standard streams, see Streams (page 51).

10.13.7.3 DB Shell

This page emulates a shell environment for executing low-level SQL queries on the Yamcs database.

For example:

simulator> show tables

+--------------+
| name |
+--------------+
| alarms |
| cmdhist |
| event_alarms |
| events |
| pp |
| tm |
+--------------+
6 rows in set

simulator> select gentime, seqNum, pname from tm limit 2

+-----------------------------+--------+---------------------------+
| gentime | seqNum | pname |
+-----------------------------+--------+---------------------------+
| 2021-05-18 09:18:05.040 UTC | 880 | /YSS/SIMULATOR/FlightData |
| 2021-05-18 09:18:06.040 UTC | 881 | /YSS/SIMULATOR/FlightData |
+-----------------------------+--------+---------------------------+
2 rows in set

The Yamcs SQL Language (page 189) is detailed in appendix.

This shell may be of interest for debugging or development purposes. Concepts such as packets, parameters
and events are better accessed using the high-level HTTP API, instead of SQL.

10.13.8 Replication

This page shows information on active replication streams between Yamcs instances.

167

10.13.8.1 Inbound

Inbound replication means that the data is incoming to the local Yamcs server.

Instance
Name of the local Yamcs instance where replicated stream tuples are injected.

Streams
The replicated streams. These must match between master and slave.

Mode
One of PUSH or PULL. In PUSH mode, the TCP connection is initiated by the remote master. In PULL
mode, the TCP connection is initiated locally by the slave.

Local address
Local host and port information for this replication connection.

Remote address
Remote host and port information for this replication connection.

Pull from
Name of the remote Yamcs instance. This is empty when the data is being pushed into the local
instance by the remote master (the remote decides where to push).

10.13.8.2 Outbound

Outbound replication means that the data is outgoing to a remote Yamcs server.

Instance
Name of the local Yamcs instance whose streams are replicated.

Streams
The replicated streams. These must match between master and slave.

Mode
One of PUSH or PULL. In PUSH mode, the TCP connection is initiated by the local master. In PULL
mode, the TCP connection is initiated by the remote slave.

Local address
Local host and port information for this replication connection.

Remote address
Remote host and port information for this replication connection.

Push to
Name of the remote Yamcs instance. This is empty when the data is being pulled by the remote slave
(the remote will decide for itself).

10.13.9 RocksDB

10.13.9.1 Open databases

This page shows debug information on open RocksDB databases. Yamcs uses RocksDB as its storage
engine.

10.13.10 API Routes

This page displays all available API methods.

168

Method
Method name in the format [SERVICE].[METHOD]. A service, in this context, is a grouping of
functionally-related methods.

Requests
The total number of completed request, since server start.

Errors
The number of requests that resulted in server errors. If this counter is not zero, it is of interest to find
the appropriate error stacktrace in the Yamcs log.

Errors originating from the client (bad request, not found) do not count as server errors. An error
response to such requests is within expectation,and will not increment this counter.

HTTP
Mapping towards HTTP of this method in the format VERB PATH.

Internally the Yamcs API implementation is largely agnostic of HTTP. Instead it implements RPC-like
services (Remote Procedure Call), which are transcoded from and to HTTP requests.

10.13.11 Leap Seconds

This page displays the leap second table used by Yamcs.

10.13.12 Threads

This page displays the threads used by the Java virtual machine.

This information is intended for debugging or development purposes.

A textual thread dump can be downloaded to your local computer by clicking the button TEXT DUMP.

169

170

11. Programs

11.1 yamcsadmin

11.1.1 Synopsis

yamcsadmin [--etc-dir <DIR>] <COMMAND> [<ARGS>]

11.1.2 Options

--log <LEVEL>

Level of verbosity. From 0 (off) to 5 (all). Default: 2.

--etc-dir <DIR>

Override default Yamcs configuration directory.

--data-dir <DIR>

Override default Yamcs data directory.

-h, --help

Show usage.

-v, --version

Print version information and quit.

11.1.3 Commands

backup (page 172)
Perform and restore backups. See yamcsadmin-backup(1).

confcheck (page 173)
Check Yamcs configuration. See yamcsadmin-confcheck(1).

mdb (page 173)
Provides MDB information. See yamcsadmin-mdb(1).

password-hash (page 173)
Generate password hash for use in etc/users.yaml. See yamcsadmin-password-hash(1).

rocksdb (page 174)
Provides low-level RocksDB data operations. See yamcsadmin-rocksdb(1).

users (page 174)
User operations. See yamcsadmin-users(1).

171

11.1.3.1 yamcsadmin backup

11.1.3.1.1 Synopsis

yamcsadmin backup create --backup-dir <DIR> [--data-dir <DIR>] [--pid <PID>] [--host <HOST:PORT>]
<TABLESPACE>
yamcsadmin backup delete --backup-dir <DIR> <ID>...
yamcsadmin backup list --backup-dir <DIR>
yamcsadmin backup purge --backup-dir <DIR> --keep <N>
yamcsadmin backup restore --backup-dir <DIR> --restore-dir <DIR> [<ID>]

11.1.3.1.2 Description Use yamcsadmin backup when you want to save and restore Yamcs data.

Backups are performed at the level of a tablespace, which (unless otherwise configured) corresponds with
an instance name. A special tablespace _global contains data that is not specific to an instance.

The backup directory is in binary format and can contain multiple restore points, one for each time the create
command was used. Use the list command to see all restore points in a backup directory.

11.1.3.1.3 Commands
create --backup-dir <DIR> [--data-dir <DIR>] [--pid <PID>] [--url <HOST:PORT>] <TABLESPACE>

Create a backup of a Yamcs tablespace. The default mode of this command is to find a locally running
Yamcs server and attach to its JVM for submitting a backup instruction while Yamcs is running.

If (and only if) Yamcs is stopped, you can perform a cold backup using the --data-dir (page 172)
property.

delete --backup-dir <DIR> <ID>...

Delete one or more backups.

list --backup-dir <DIR>

List the existing backups.

purge --backup-dir <DIR> --keep <N>

Purge old backups.

restore --backup-dir <DIR> --restore-dir <DIR> [<ID>]

Restore a backup by its ID.

If unspecified <ID> defaults to the last backup.

Note that backups can only be restored when Yamcs is not running.

11.1.3.1.4 Options
--backup-dir <DIR>

Directory containing backups.

When used with the create command, the directory is automatically created if it does not yet exist.
--data-dir <DIR>

This option is only valid for the create command.

Path to a Yamcs data directory. This must be specified when performing a cold backup.

--restore-dir <DIR>

This option is only valid for the restore command.

Directory where to restore the backup.

172

--pid <PID>

This option is only valid for the create command.

Specify the program identifier of the Yamcs server to attach to. If there is only one server running, use
of this option is unnecessary.

--host <HOST:PORT>

This option is only valid for the create command.

Perform a hot backup using a remote JMX operation.

--keep <N>

This option is only valid for the purge command.

The number of backups to keep.

<ID>

A unique identifier for a restore point. You can find existing identifiers using the list command.

11.1.3.2 yamcsadmin confcheck

11.1.3.2.1 Synopsis

yamcsadmin confcheck

11.1.3.2.2 Description Check Yamcs configuration.

11.1.3.3 yamcsadmin mdb

11.1.3.3.1 Synopsis

yamcsadmin mdb print <INSTANCE>
yamcsadmin mdb verify <INSTANCE>

11.1.3.3.2 Description Groups operations on a the Mission Database (MDB) of a specific Yamcs instance.

11.1.3.3.3 Commands
print <INSTANCE>

Print MDB content

verify <INSTANCE>

Verify that the MDB can be loaded

11.1.3.4 yamcsadmin password-hash

11.1.3.4.1 Synopsis

yamcsadmin password-hash

11.1.3.4.2 Description Prompts to enter and confirm a password, and generates a randomly salted
PBKDF2 hash of this password. This hash may be used in etc/users.yaml instead of the actual pass-
word, and allows verifying user passwords without storing them.

173

11.1.3.4.3 Environment
YAMCSADMIN_PASSWORD

Provide the password through the environment, thereby avoiding prompts.

11.1.3.5 yamcsadmin rocksdb

11.1.3.5.1 Synopsis

11.1.3.5.2 Description Provides low-level RocksDB data operations.

11.1.3.5.3 Commands
compact [--dbDir DIR] [--sizeMB SIZE]

Compact RocksDB database

bench [--dbDir DIR] [--baseTime TIME] [--count COUNT] [--duration HOURS]

Benchmark RocksDB storage engine.

A rocksbench archive instance will be created in the directory indicated by --dbDir (page 174).

The benchmark consists of a table load and a few selects. The table is loaded with telemetry packets
received at frequencies of [10/sec, 1/sec, 1/10sec, 1/60sec and 1/hour]. The table will be identical to
the tm table and will contain a histogram on pname (= packet name). It is possible to specify how many
partitions (i.e. how many different pnames) to be loaded for each frequency and the time duration of
the data.

11.1.3.5.4 Options
--dbDir <DIR>

Database directory.
--sizeMB <SIZE>

This option is only valid for the compact command.

Target size of each SST file in MB (default is 256 MB).

--baseTime <TIME>

This option is only valid for the bench command.

Start inserting data with this time. Default: 2017-01-01T00:00:00

--count <COUNT>

This option is only valid for the bench command.

The partition counts for the 5 frequencies: [10/sec, 1/sec, 1/10sec, 1/60sec and 1/hour]. It has to be
specified as a string (use quotes).

--duration <HOURS>

This option is only valid for the bench command.

The duration in hours of the simulated data. Default: 24

11.1.3.6 yamcsadmin users

11.1.3.6.1 Synopsis

yamcsadmin users add-role <USERNAME> --role <ROLE>
yamcsadmin users check-password <USERNAME>
yamcsadmin users create [--email <EMAIL>] [--display-name <NAME>] [--inactive] [--superuser]
[--no-password] <USERNAME>

174

yamcsadmin users delete <USERNAME>
yamcsadmin users describe <USERNAME>
yamcsadmin users list
yamcsadmin users remove-identity <USERNAME> --identity <IDENTITY>
yamcsadmin users remove-role <USERNAME> --role <ROLE>
yamcsadmin users reset-password <USERNAME>
yamcsadmin users update [--active true | false] [--display-name <NAME>] [--email <EMAIL>] [--superuser
true | false] <USERNAME>

11.1.3.6.2 Description User operations.

11.1.3.6.3 Commands
add-role <USERNAME> --role <ROLE>

Add a role to a user.

check-password <USERNAME>

Check a user's password. This command prompts to enter the user's current password. The command
will print if the provided password is correct or not.

The command may be used in non-interactive mode by setting the password with the environment
variable YAMCSADMIN_PASSWORD.

create [--email <EMAIL>] [--display-name <NAME>] [--inactive] [--superuser] [--no-password] <USERNAME>

Create a new Yamcs user. This prompts for a password.

The command may be used in non-interactive mode by setting the password with the environment
variable YAMCSADMIN_PASSWORD, or using the option --no-password.

delete <USERNAME>

Delete a user.

describe <USERNAME>

Describe user details.

list

List users.

remove-identity <USERNAME> --identity <IDENTITY>

Remove an identity from a user.

remove-role <USERNAME> --role <ROLE>

Remove a role from a user.

reset-password <USERNAME>

Reset a user's password.

update [--active true | false] [--display-name <NAME>] [--email <EMAIL>] [--superuser true | false] <USERNAME>

Update user details. Prompts to enter and confirm a new user password.

The command may be used in non-interactive mode by setting the password with the environment
variable YAMCSADMIN_PASSWORD.

11.1.3.6.4 Options
--role <ROLE>

With add-role, specify the role to be added.

With remove-role, specify the role to be removed.

175

--display-name <NAME>

With create and update, specify the displayed name of the user.

--email <EMAIL>

With create and update, specify the user email.

--inactive

With create, prevent Yamcs from activating the account.

--active true | false

With update, activate or inactivate the user account.

--superuser

With create and update, grant this user superuser privileges.

--no-password

With create, indicate that this user should not have a password. This will also bypass the password
prompt.

11.1.3.6.5 Environment
YAMCSADMIN_PASSWORD

Commands that prompt for a password, can alternatively be run in non-interactive mode by specifying
this environment variable.

11.2 yamcsd

11.2.1 Synopsis

yamcsd [--version] [--help] [--check] [--log <LEVEL>] [--log-config <FILE>] [--no-color] [--no-stream-redirect]
[--etc-dir <DIR>] [--data-dir <DIR>] [--cache-dir <DIR>] [--netty-leak-detection <LEVEL>]

11.2.2 Description

yamcsd is a shell wrapper that launches a JVM running the Yamcs main program.

11.2.3 Options

--log <LEVEL>

Level of verbosity. From 0 (off) to 4 (all). Default: 2. This option only affects console logging, not file
logging. For high verbosity levels, this option should be combined with the option --log-config to
reduce the amount of output to only selected individual loggers.

--log-config <FILE>

Finetune the log level of individual loggers. This option only affects console logging, not file logging. An
example is given below. When this option is not specified, all loggers are active.

--no-color

Add this flag to disable ANSI color codes used in console logging.

--no-stream-redirect

Add this flag to prevent Yamcs from redirecting stdout/stderr output via the logging system.

--etc-dir <DIR>

Path to config directory. This defaults to the etc directory relative to the working directory.

176

--data-dir <DIR>

Path to data directory. When unspecified the location is read from the etc/yamcs.yaml configuration
file.

--cache-dir <DIR>

Path to cache directory. When unspecified the location is read from the etc/yamcs.yaml configuration
file.

--check

Run syntax tests on configuration files and quit.

--netty-leak-detection <LEVEL>

Level of leak detection used by the Netty library. Leak detection is disabled by default as it has a
negative impact on performance. The available levels are:

DISABLED
Disables leak detection (default)

SIMPLE
Samples 1% of all Netty resources and reports when a leak is detected. Small overhead, but
difficult to tell what caused the leak.

ADVANCED
Samples 1% of all Netty resources and reports when a leak is detected and where the object was
recently accessed. High overhead.

PARANOID
Tracks all Netty resources and reports when a leak is detected and where the object was recently
accessed. Very high overhead.

Note that leak detection triggers only upon a GC.

-v, --version

Print version information and quit.

-h, --help

Show usage.

11.2.4 Environment

The following environment variables may be specified.

YAMCS_DATA_DIR

Path to data directory.

YAMCS_ETC_DIR

Path to configuration directory.

YAMCS_CACHE_DIR

Path to cache directory.

YAMCS_NO_COLOR, NO_COLOR

Suppress colorized output. The NO_COLOR alias is a convention used by many other programs.

11.2.5 Log Config Example

The file specified with the option --log-config (page 176) must be in properties format, where keys repre-
sent a logger, and values represent the verbosity level of that logger. Unmentioned loggers are considered
to be off (level = 0). Example:

177

Levels:
0 = off
1 = warnings and errors
2 = info
3 = debug
4 = trace

org.yamcs = 3
org.yamcs.http = 1
com.example.myproject = 4

Note that the effective log level of any specified logger is always ceiled to that of the --log (page 176) option.

11.3 Systemd Unit File

Yamcs package installations include a systemd unit file for starting and stopping Yamcs as a service.

The unit file is located at /usr/lib/systemd/system/yamcs.service.

You should not modify this file directly, but instead use standard systemd mechanisms to customize unit files.
See the instructions for your operating system.

Usage:

systemctl start|stop|restart|status yamcs

systemctl accepts these commands:

start

Starts Yamcs.

stop

Stops the Yamcs process and any other processes it may have launched.

restart

Stops Yamcs if it is running, then starts it again.

status

Checks if Yamcs is currently running. This will only detect a Yamcs runtime that has been started via
systemd.

If you would like Yamcs to start automatically on boot, run:

systemctl enable yamcs

If you want to revert Yamcs starting automatically, run:

systemctl disable yamcs

11.4 packet-viewer

11.4.1 Synopsis

packet-viewer [<OPTIONS>]
packet-viewer [-l <N>] -x <MDB> <FILE>
packet-viewer [-l <N>] [-x <MDB>] -i <INSTANCE> [-s <STREAM>] <URL>

178

11.4.2 Description

Use packet-viewer to extract parameters from packets by either loading a packet dump from disk (~ offline
mode), or by decoding the raw data received from connecting to a Yamcs server (~ online mode).

In online mode, the splitting of packets is done by Yamcs Server and packet-viewer extracts parameters
from each packet binary by using the same logic as Yamcs Server would.

In offline mode packet-viewer must in addition have access to a local MDB, and requires configuration
so that it knows how to decode individual packets from a dump file. By default, dump files are assumed to
contain concatenated CCSDS.

11.4.3 Options

-h

Print a help message and exit.

-l <N>

Limit the view to <N> packets.

In online mode only the last <N> packets will be visible. The default is 1000.

In offline mode only the first <N> packets of the file are displayed. There is no default, but for large
dumps packet-viewer may become sluggish or run out of heap memory.

-x <MDB>

Name of the applicable MDB as specified in the etc/mdb.yaml configuration file.

This option is required in offline mode. In online mode the MDB defaults to that of the connected Yamcs
instance.

-i <INSTANCE>

In online mode, this indicates which instance's telemetry stream packet-viewer should connect to.

-s <STREAM>

In online mode, this indicates which telemetry stream packet-viewer should connect to.

Default: tm_realtime.

<FILE>

A local file which contains one or more packets. Typically concatenated CCSDS, but other file formats
can be defined through configuration.

<URL>

Base URL of a Yamcs server.

11.4.4 Examples

Offline mode:

packet-viewer -l 50 -x my-db packet-file

Online mode:

packet-viewer -l 50 -i simulator http://localhost:8090

179

11.4.5 Configuration Files

packet-viewer configuration files are placed in the etc/ directory. MDB files for local packet decoding are
placed in mdb/ directory.

<packet-viewer>
|-- bin/
|-- etc/
| |-- mdb.yaml
| +-- packet-viewer.yaml
|-- lib/
+-- mdb/

|-- xtce1.xml
+-- xtce2.xml

11.4.5.1 mdb.yaml

Specifies one or more MDB configurations, which you can then choose from in order to extract parameters
from a packet.

The MDB configuration structure can be copied from a etc/yamcs.instance.yaml configuration file, but
with a level on top which specifies the name visible in UI. In the following example, the user can choose
between mymdb1 and mymdb2.

mymdb1:
- type: "xtce"
args:
file: "mdb/xtce1.xml"

mymdb2:
- type: "xtce"
args:
file: "mdb/xtce2.xml"

11.4.5.2 packet-viewer.yaml

packetPreprocessorClassName / packetPreprocessorArgs
Configure a packet pre-processor. Configuration options are identical to preprocessor configuration of
a data link on Yamcs Server.

fileFormats
List of supported file formats when opening a local packet dump file. The file format determines how to
split the file in packets. Sub-keys:

name
Name of the format, as visible in UI.

packetInputStreamClassName / packetInputStreamArgs
Configures a packet input stream. Configuration options are identical to packet input stream
configuration of a data link on Yamcs Server.

rootContainer
Qualified name of the base container. Required if it cannot be uniquely determined.

Example:

packetPreprocessorClassName: org.yamcs.tctm.IssPacketPreprocessor
fileFormats:

- name: CCSDS Packets
packetInputStreamClassName: org.yamcs.tctm.CcsdsPacketInputStream

180

11.4.6 Packet Filter

Packet Viewer includes a filter box for filtering the displayed packets through arbitrary expressions.

For example, assume you have parameters /YSS/param1 and /YSS/param2 then you could write arbitrary
expressions like:

param1 > 2
param2 == 3
param1 > 3 or param2 != 4

The left-hand side of a clause must always be the parameter. This may also be a fully qualified parameter
name like /YSS/param1.

The operator must be one of ==, !=, <, <=, >, >= or contains. The latter is useful for string parameters.

The right-hand side of a clause may be a number or a string, and is compared to the engineering value of
the parameter. The string may be surrounded by double quotes.

You can combine multiple clauses through the logical operators and, or, not (or &&, ||, !). Parentheses are
allowed.

When done typing a filter, press ENTER to apply it.

11.4.6.1 Filter on packet properties

There are two hardcoded "parameters" that allow filtering on the global packet name or length:

packet.name == DHS
packet.length > 200

11.4.6.2 Filter on parameter presence

The operator and right-hand side of a clause are optional. This allows filtering on the presence of a parameter
inside a packet. Example:

param1

Or, display only packets that do not include a parameter param1:

!(param1)

11.4.6.3 Filter grammar

expr ::= or_expr

or_expr ::= and_expr (or_op and_expr)*

and_expr ::= unary_expr (and_op unary_expr)*

unary_expr ::= not_op "(" expr ")"

181

| "(" expr ")"

| comparison

comparison ::= reference [rel_op literal]

reference ::= refchar+

refchar ::= letter | digit | "/" | "_" | "-" | "[" | "]" | "."

literal ::= string | quoted_string

string ::= stringchar+

quoted_string ::= '"' [string] '"'

stringchar ::= letter | digit | ":" | "_" | "/" | "-"

letter ::= "a"..."Z"

digit ::= "0"..."9"

rel_op ::= eq_op | ne_op

| gt_op | lt_op

| ge_op | le_op

| matches_op | "contains"

eq_op ::= "eq" | "=="

ne_op ::= "ne" | "!="

gt_op ::= "gt" | ">"

lt_op ::= "lt" | "<"

ge_op ::= "ge" | ">="

le_op ::= "le" | "<="

matches_op ::= "matches" | "~"

and_op ::= "and" | "&&"

or_op ::= "or" | "||"

not_op ::= "not" | "!"

182

12. Configuration Sections

Some of the standard configuration files can be extended with custom configuration options. This is called a
configuration section. Sections are represented by a top-level identifier and are scoped to a type of configu-
ration file.

A Yamcs plugin is automatically associated with a configuration section named after the plugin identifier.

For example, the yamcs-web module is packaged as a Yamcs plugin, and accepts configuration options read
from the yamcs-web section of the main etc/yamcs.yaml:

public class WebPlugin implements Plugin {

public Spec getSpec() {
Spec spec = new Spec();
// ...
return spec;

}

@Override
public void onLoad(YConfiguration config) throws PluginException {

// Use the actual configuration
}

}

Here the org.yamcs.Spec132 object is a helper class that allows defining how to validate your plugin configu-
ration. Yamcs will take care of the actual validation step, and if all went well the onLoad hook should trigger.
This is a good place to access the runtime configuration model, and retrieve your custom options.

If you have custom components that want to access this configuration, one possible way is to provide acces-
sors on your plugin class, and then to retrieve the singleton instance of your plugin class:

PluginManager pluginManager = YamcsServer.getServer().getPluginManager();
MyPlugin plugin = pluginManager.getPlugin(MyPlugin.class);
// ...

Instance-specific configuration

Besides global plugin configuration options in etc/yamcs.yaml, you may also want to add instance-specific
configuration options. These would be considered when validating any etc/yamcs.instance.yaml file:

YamcsServer yamcs = YamcsServer.getServer();
yamcs.addConfigurationSection(ConfigScope.YAMCS_INSTANCE, "my-section", spec);

132 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/Spec.html

183

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/Spec.html

184

13. Command Options

Yamcs supports a programmatic API for activating custom command options. When commands are issued
with custom options, these can be interpreted by you own code, typically a TC data link.

Custom command options do not impact the encoding of telecommand packets, rather they are used for
passing other instructions, such as at-runtime overriding of link properties.

Custom command options are added system-wide. Registered command options are available in all official
clients wherever a command can be configured for sending.

Command options are automatically saved as attributes in Command History, and will also be received by all
command/acknowledgment listeners.

13.1 Registration

Command options must be registered against org.yamcs.YamcsServer133. It is not possible to send custom
options without the option being registered.

// Statically retrieve the current Yamcs server object.
YamcsServer yamcs = YamcsServer.getServer();

CommandOption option = new CommandOption(
"cop1Bypass", // System-wide unique identifier. Also stored in cmdhist.
"COP-1 Bypass", // Verbose name for display in UI clients.
CommandOptionType.BOOLEAN, // The expected type for hinting UI clients.

);

yamcs.addCommandOption(option);

A registration can only be done once, or else addCommandOption() will throw an exception. One way of
doing so is to put this registration in the static initializer of the components that uses this option (e.g. a
command link). Then the command option will only be loaded (and once only) when at least one such link is
running.

An alternative method that avoids the use of static initializers, is to implement org.yamcs.Plugin134, and then
put the registration in the onLoad lifecycle hook. This hook is called once-only when the server is starting up.

public class MyPlugin implements Plugin {

public static final CommandOption MY_OPTION = ...;

public void onLoad(YConfiguration config) { // Called on start-up
YamcsServer yamcs = YamcsServer.getServer();
yamcs.addCommandOption(MY_OPTION);

}
}

133 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/YamcsServer.html
134 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/Plugin.html

185

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/YamcsServer.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/Plugin.html

Note: Plugins must be packaged in a specific manner, before Yamcs can actually find and load them. This
is documented separately.

13.2 Types

There is support for these types: BOOLEAN, NUMBER, STRING and TIMESTAMP. These types are only a hint for
use by UI clients. For example, the Yamcs web interface will use these types to determine which UI controls
to render in a dynamic form, and how to encode the values for persisting in Command History. The HTTP API
will not check which Value135 types are used. Submitted values are pushed end-to-end in a type-preserving
manner.

The effective Value136 type is intentionally loose, and depends on the client. The Yamcs web interface for
example, will use double for submitting the value of any NUMBER options.

13.3 Permissions

The use of any command option requires the system privilege CommandOptions.

135 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/protobuf/Value.html
136 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/protobuf/Value.html

186

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/protobuf/Value.html
https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/protobuf/Value.html

14. Yamcs Plugin Format

Yamcs has a simple plugin system that facilitates hooking into internals. The main advantages is that it allows
to trigger custom code on server-start, which makes it an ideal place for programmatic customizations.

For example, you could use a plugin to dynamically add services without even needing to write them in YAML.
Or you could use a plugin to read and validate some custom configuration file that is shared by multiple of
your components. Or maybe you want to add your own custom HTTP and WebSocket calls to the API.

The following is a detailed specification of how Yamcs plugins should be packaged. If you want the short
instructions, just implement org.yamcs.Plugin137 and add this execution to the pom.xml of your Yamcs Maven
project. Then everything will be derived automatically:

<plugin>
<groupId>org.yamcs</groupId>
<artifactId>yamcs-maven-plugin</artifactId>
<!--version>...</version-->
<executions>
<execution>
<goals>
<goal>detect</goal>

</goals>
</execution>

</executions>
</plugin>

14.1 Main configuration file

Yamcs plugins should be packaged inside regular jar files. You can have as many plugins inside a jar as you
want. Your jar file must contain the following file in its classpath:

/META-INF/services/org.yamcs.Plugin

The content of this file must list the class names of all the plugins in your jar (one on each line). So for instance
if you want to register your plugin com.example.MyPlugin, then the contents of the file org.yamcs.Plugin
must be simply:

com.example.MyPlugin

With this setup, Yamcs will find your plugin and hook it into its lifecycle.

14.2 Plugin metadata

In addition to the file /META-INF/services/org.yamcs.Plugin, you must also add the following file to your
classpath:

/META-INF/yamcs/com.example.MyPlugin/plugin.properties

137 https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/Plugin.html

187

https://docs.yamcs.org/javadoc/yamcs/latest/org/yamcs/Plugin.html

Replace com.example.MyPlugin with the class name of your own plugin. The file plugin.properties
supports the following key value pairs:

REQUIRED. A short identifier for your plugin
name=my-plugin

REQUIRED. A version number for your plugin
version=1.0.0

Optional: freeform description (no markup)
description=Example

Optional: your organization name
organization=Example

Optional: your organization's URL
organizationUrl=https://example.com

Optional: when your plugin package was generated (ISO 8601)
generated=

All these properties are used by Yamcs as metadata for potential integration in APIs and UIs.

188

A. SQL Language

This appendix specifies the SQL language used by Yamcs for its internal database.

A.1 Identifiers

identifier ::= letter+ (digit | letter | specialchars)*

letter ::= "A"..."Z"

specialchars ::= "$" | "_" | "# | "."

A.2 Literals

A.2.1 Integer Literals

integer ::= decinteger | hexinteger

decinteger ::= digit+

hexinteger ::= "0" "X" hexdigit+

hexdigit ::= digit | "A"..."F"

digit ::= "0"..."9"

A.2.2 Float Literals

float ::= digit* "." digit+ [exponent]

| digit+ exponent

exponent ::= ["+" | "-"] ["E"] digit+

A.2.3 String Literals

string ::= "'" stringchar* "'" ("'" stringchar* "'")*

stringchar ::= <any character except newline or quote>

189

Concatenation

Adjacent string literals (delimited by whitespace) are allowed, and concatenated at compile time.

A.3 Operators

addOp ::= "+" | "-" | "||"

multOp ::= "*" | "/" | "MOD"

relOp ::= "=" | "!=" | ">=" | ">" | "<>" | "<=" | "&&" | "<"

bitWiseOp ::= "&" | "|" | "^" | "<<" | ">>"

A.4 Object Names

objectName ::= identifier | doubleQuotedIdentifier

doubleQuotedIdentifier ::= '"' stringchar* '"'

A.5 Expressions

simpleExpression ::= additiveExpression (bitwiseOp additiveExpression)*

additiveExpression ::= multiplicativeExpression (addOp multiplicativeExpression)*

multiplicativeExpression ::= exponentExpression (multOp multiplicativeExpression)*

exponentExpression ::= unaryExpression ["**" unaryExpression]

unaryExpression ::= ["+" | "-"] primaryExpression

primaryExpression ::= integer

| float

| string

| "?"

| "(" simpleExpression ")"

| "ARRAY" "[" expressionList "]"

| functionCall

| objectName

expression ::= andExpression ("OR" andExpression)*

andExpression ::= unaryLogicalExpression

| "(" expression ")" ("AND" (

unaryLogicalExpression

| "(" expression ")"

190

))*

unaryLogicalExpression ::= ["NOT"] relationalExpression

relationalExpression ::= simpleExpression

[

relOp simpleExpression

| inClause

| betweenClause

| likeClause

| isNullClause

]

expressionList ::= expression ("," expression)*

inClause ::= ["NOT"] "IN" "(" expressionList ")"

betweenClause ::= ["NOT"] "BETWEEN" simpleExpression "AND" simpleExpression

likeClause ::= ["NOT"] "LIKE" (STRING | "?")

isNullClause ::= "IS" ["NOT"] "NULL"

functionCall ::= objectName "(" [expressionList | "*"] ")"

selectExpression ::= "SELECT" selectList

"FROM" tupleSourceExpression

["[" windowSpecification "]"]

["WHERE" expression]

["ORDER" ["ASC" | "DESC"]]

["LIMIT" [offset ","] rowCount]

mergeExpression ::= "MERGE" tupleSourceExpression ("," tupleSourceExpression)*

"USING" columnName

["ORDER" ["ASC" | "DESC"]]

["LIMIT" [offset ","] rowCount]

selectList ::= selectItem ("," selectItem)*

selectItem ::= "*"

| simpleExpression [["AS"] columnName]

tupleSourceExpression ::= objectName ["HISTOGRAM" "(" columnName ["," mergeTime] ")"]

| "(" streamExpression ")"

windowSpecification ::= "SIZE" integer "ADVANCE" integer windowMode

windowMode ::= "TIME" | "TUPLES" | "ON" columnName

offset ::= integer

rowCount ::= integer

mergeTime ::= integer

191

A.6 Functions

A.6.1 COALESCE()

COALESCE(value1, value2, value3, ...)

The COALESCE() function returns the first value from the list of arguments that is not NULL, or NULL if there is
none.

A.6.2 UNHEX()

UNHEX(str)

The UNHEX() function interpretes the given argument as a hexadecimal string, and returns a binary value.

A.6.3 EXTRACT_SHORT()

EXTRACT_SHORT(binary, offset)

Decodes 16 bits signed at the specified offset, returning a short value.

A.6.4 EXTRACT_USHORT()

EXTRACT_USHORT(binary, offset)

Decodes 16 bits unsigned at the specified offset, returning an integer value.

A.6.5 EXTRACT_INT()

EXTRACT_INT(binary, offset)

Decodes 32 bits signed at the specified offset, returning an integer value.

A.6.6 EXTRACT_U3BYTES()

EXTRACT_U3BYTES(binary, offset)

Decodes 24 bits unsigned at the specified offset, returning an integer value.

A.6.7 COUNT()

COUNT(*)
COUNT(column)

Aggregate function that counts the number of rows in a table that match the specified WHERE clause.

A.6.8 SUBSTRING()

192

SUBSTRING(str, offset)
SUBSTRING(str, offset, length)

Returns a substring of the given string, starting at the specified character offset.

A.6.9 SUM()

SUM(column)

Aggregate function that returns the sum of the values of a given column for all rows in a table that match the
specified WHERE clause.

A.7 Statements

A.7.1 ALTER SEQUENCE Statement

alterSequenceStatement ::= "ALTER" "SEQUENCE" objectName "RESTART" ["WITH" restart]

restart ::= integer

Changes the properties of an existing sequence generator.

A.7.2 ALTER TABLE Statement

alterTableStatement ::= "ALTER" "TABLE" objectName "RENAME" "TO" objectName

Changes table properties. Currently this is limited to renaming.

A.7.3 CLOSE STREAM Statement

closeStreamStatement ::= "CLOSE" "STREAM" objectName

A.7.4 CREATE TABLE Statement

createTableStatement ::= "CREATE" "TABLE" ["IF" "NOT" "EXISTS"] tableName "("

tableColumnDefinition ("," tableColumnDefinition)*

"," "PRIMARY" "KEY" "(" columnName ("," columnName)* ")"

["," "INDEX" "(" columnName ("," columnName)* ")"]

")"

["HISTOGRAM" "(" columnName ("," columnName)* ")"]

["ENGINE" engineName]

["PARTITION" "BY" partitioningSpec]

193

["TABLESPACE" tablespaceName]

["TABLE_FORMAT" "=" "COMPRESSED"]

tableColumnDefinition ::= columnName dataType ["AUTO_INCREMENT"]

dataType ::= simpleDataType | arrayDataType

arrayDataType ::= simpleDataType "[]"

simpleDataType ::= : "BINARY"

| "BOOLEAN"

| "BYTE"

| "DOUBLE"

| "ENUM"

| "HRES_TIMESTAMP"

| "INT"

| "LONG"

| "PARAMETER_VALUE"

| "SHORT"

| "STRING"

| "PROTOBUF" "(" className ")"

| "TIMESTAMP"

| "UUID"

partitioningSpec ::= "TIME" "(" columnName ["(" timePartitioning ")"] ")"

| "VALUE" "(" columnName ")"

| "TIME_AND_VALUE" "("

columnName ["(" timePartitioning ")"],

columnName

")"

className ::= string

columnName ::= objectName

timePartitioning ::= "'YYYY'" | "'YYYY/DOY'" | "'YYYY/MM'"

Partitioning

Partitioning allows to separate the data in different RocksDB databases (by time) and column families (by
value).

Time partitioning allows the following schemes:

• YYYY: one RocksDB database per year.

• YYYY/DOY: one RocksDB database per combination year, and day of the year.

• YYYY/MM: one RocksDB database per combination year, and month of the year.

Partitioning by time ensures that old data is frozen and not disturbed by new data coming in.

194

A.7.5 CREATE STREAM Statement

createStreamStatement ::= "CREATE" "STREAM" streamName (

"AS" streamExpression ["NOFOLLOW"]

| "(" streamColumnDefinition ("," streamColumnDefinition)* ")"

)

streamExpression ::= selectExpression | mergeExpression

streamColumnDefinition ::= columnName dataType

A.7.6 DELETE Statement

deleteStatement ::= "DELETE" "FROM" objectName

["WHERE" expression]

["LIMIT" integer]

Delete records from a table.

A.7.7 DESCRIBE Statement

describeStatement ::= "DESCRIBE" objectName

Obtain information about table or stream structure.

A.7.8 DROP TABLE Statement

dropTableStatement ::= "DROP" "TABLE" ["IF" "EXISTS"] objectName

Remove a table.

A.7.9 INSERT Statement

insertStatement ::= ("INSERT" | "UPSERT" | "INSERT_APPEND" | "UPSERT_APPEND" | "LOAD")

"INTO" objectName

(streamExpression | insertValues)

insertValues ::= "(" columnName ("," columnName)* "VALUES" "(" selectList ")"

A.7.10 SELECT TABLE Statement

195

selectTableStatement ::= "SELECT" selectList

"FROM" tupleSourceExpression

["[" windowSpecification "]"]

["WHERE" expression]

["ORDER" ["ASC" | "DESC"]]

["LIMIT" [offset ","] rowCount]

A.7.11 SHOW DATABASES Statement

showDatabasesStatement ::= "SHOW" "DATABASES"

Lists the databases.

A.7.12 SHOW ENGINES Statement

showEnginesStatement ::= "SHOW" "ENGINES"

Lists the server's storage engines.

A.7.13 SHOW SEQUENCES Statement

showSequencesStatement ::= "SHOW" "SEQUENCES"

Lists the sequences in the current database.

A.7.14 SHOW STREAMS Statement

showStreamsStatement ::= "SHOW" "STREAMS"

Lists the streams in the current database.

A.7.15 SHOW TABLES Statement

showTablesStatement ::= "SHOW" "TABLES"

Lists the tables in the current database.

A.7.16 UPDATE Statement

196

updateStatement ::= "UPDATE" "SET" columnName "=" expression

("," columnName "=" expression)*

["WHERE" expression]

["LIMIT" integer]

197

198

Index

Symbols
--active

yamcsadmin-users command line option,
176

--backup-dir
yamcsadmin-backup command line option,

172
--baseTime

yamcsadmin-rocksdb command line
option, 174

--cache-dir
yamcsd command line option, 177

--check
yamcsd command line option, 177

--count
yamcsadmin-rocksdb command line

option, 174
--data-dir

yamcsadmin command line option, 171
yamcsadmin-backup command line option,

172
yamcsd command line option, 176

--dbDir
yamcsadmin-rocksdb command line

option, 174
--display-name

yamcsadmin-users command line option,
175

--duration
yamcsadmin-rocksdb command line

option, 174
--email

yamcsadmin-users command line option,
176

--etc-dir
yamcsadmin command line option, 171
yamcsd command line option, 176

--help
yamcsadmin command line option, 171
yamcsd command line option, 177

--host
yamcsadmin-backup command line option,

173
--inactive

yamcsadmin-users command line option,
176

--keep
yamcsadmin-backup command line option,

173
--log

yamcsadmin command line option, 171
yamcsd command line option, 176

--log-config
yamcsd command line option, 176

--netty-leak-detection
yamcsd command line option, 177

--no-color
yamcsd command line option, 176

--no-password
yamcsadmin-users command line option,

176
--no-stream-redirect

yamcsd command line option, 176
--pid

yamcsadmin-backup command line option,
172

--restore-dir
yamcsadmin-backup command line option,

172
--role

yamcsadmin-users command line option,
175

--sizeMB
yamcsadmin-rocksdb command line

option, 174
--superuser

yamcsadmin-users command line option,
176

--version
yamcsadmin command line option, 171
yamcsd command line option, 177

-h
packet-viewer command line option, 179
yamcsadmin command line option, 171
yamcsd command line option, 177

-i
packet-viewer command line option, 179

-l
packet-viewer command line option, 179

-s
packet-viewer command line option, 179

-v
yamcsadmin command line option, 171
yamcsd command line option, 177

-x
packet-viewer command line option, 179

199

<FILE>
packet-viewer command line option, 179

<ID>
yamcsadmin-backup command line option,

173
<URL>

packet-viewer command line option, 179

A
ALTER SEQUENCE, 193
ALTER TABLE, 193

C
CLOSE STREAM, 193
COALESCE, 192
COUNT, 192
CREATE STREAM, 194
CREATE TABLE, 193

D
DELETE, 195
DESCRIBE, 195
DROP TABLE, 195

E
EXTRACT_INT, 192
EXTRACT_SHORT, 192
EXTRACT_U3BYTES, 192
EXTRACT_USHORT, 192

F
Function

COALESCE, 192
COUNT, 192
EXTRACT_INT, 192
EXTRACT_SHORT, 192
EXTRACT_U3BYTES, 192
EXTRACT_USHORT, 192
SUBSTRING, 192
SUM, 193
UNHEX, 192

I
INSERT, 195

P
packet-viewer command line option

-h, 179
-i, 179
-l, 179
-s, 179
-x, 179
<FILE>, 179
<URL>, 179

S
SELECT TABLE, 195
SHOW DATABASES, 196

SHOW ENGINES, 196
SHOW SEQUENCES, 196
SHOW STREAMS, 196
SHOW TABLES, 196
Statement

ALTER SEQUENCE, 193
ALTER TABLE, 193
CLOSE STREAM, 193
CREATE STREAM, 194
CREATE TABLE, 193
DESCRIBE, 195
DROP TABLE, 195
INSERT, 195
SELECT TABLE, 195
SHOW DATABASES, 196
SHOW ENGINES, 196
SHOW SEQUENCES, 196
SHOW STREAMS, 196
SHOW TABLES, 196
UPDATE, 196

SUBSTRING, 192
SUM, 193

U
UNHEX, 192
UPDATE, 196

Y
yamcsadmin command line option

--data-dir, 171
--etc-dir, 171
--help, 171
--log, 171
--version, 171
-h, 171
-v, 171

yamcsadmin-backup command line option
--backup-dir, 172
--data-dir, 172
--host, 173
--keep, 173
--pid, 172
--restore-dir, 172
<ID>, 173

yamcsadmin-rocksdb command line option
--baseTime, 174
--count, 174
--dbDir, 174
--duration, 174
--sizeMB, 174

yamcsadmin-users command line option
--active, 176
--display-name, 175
--email, 176
--inactive, 176
--no-password, 176
--role, 175
--superuser, 176

200

yamcsd command line option
--cache-dir, 177
--check, 177
--data-dir, 176
--etc-dir, 176
--help, 177
--log, 176
--log-config, 176
--netty-leak-detection, 177
--no-color, 176
--no-stream-redirect, 176
--version, 177
-h, 177
-v, 177

201

	General Information
	Monitoring and Control Model
	Server Architecture
	Instances
	Data Links
	Streams
	Processors
	Mission Database (MDB)
	Services
	Plugins
	Stream Archive
	Parameter Archive
	Buckets
	Extension points

	Time in Yamcs
	Time Encoding
	Wall clock time
	Mission Time
	Processor Time
	Reception Time
	Generation Time
	Earth Reception Time

	Server Administration
	Configuration
	Server Configuration
	Instance Configuration
	Configuration Properties

	Logging

	Mission Database
	Data Types
	Parameter types vs Argument types
	Integer data type
	Float data type
	Boolean data type
	String data type
	Binary data type
	Absolute time data type
	Enumerated data type
	Aggregate data type
	Array data type

	Parameter Definitions
	Container Definitions
	Container Aggregation
	Container Inheritance
	Little Endian Parameter Encoding

	Alarm Definitions
	Algorithm Definitions
	Triggers
	User Libraries
	Algorithm Scope
	Sharing State
	Historic Values
	JavaScript algorithms
	Python algorithms
	Java expression algorithms
	Java algorithms
	Command verifier algorithms
	Data Decoding algorithms

	Command Definitions
	Loading TM/TC Definitions
	XTCE Loader
	Configuration
	Compatibility

	Spreadsheet Loader
	General Sheet
	ChangeLog Sheet
	DataTypes Sheet
	Encoding and Raw Types
	Unsigned Integers
	Signed Integers
	Floats
	Booleans
	String
	Binary
	Custom

	Engineering Types

	Parameters Sheet
	Derived Parameters Sheet
	Local Parameters Sheet
	Containers Sheet
	Algorithms Sheet
	Alarms Sheet
	Commands Sheet
	CommandOptions Sheet
	CommandVerification Sheet
	Calibration Sheet
	Polynomials
	Splines
	Enumerations
	Java Expressions
	Time

	Empty Node

	Data Management
	Streams
	Generic Archive
	Telemetry Packets
	Events
	Command History
	Alarms
	Parameters

	Parameter Archive
	Archive Filling
	Parameter Archive Internals
	Archive Structure
	Column Families
	Segment Encoding
	Future Work

	Object Archive (buckets)
	Buckets
	Options

	Bucket Providers
	Options

	Data Links
	Packet Pre-processor
	Stream Splitting
	Packet pre-processing
	Pre-processor Configuration

	Command Post-Processor
	File Polling TM Data Link
	Class Name
	Configuration Options

	TCP TC Data Link
	Class Name
	Configuration Options

	TCP TM Data Link
	Class Name
	Configuration Options

	TSE Data Link
	Class Name
	Configuration Options

	UDP Parameter Data Link
	Class Name
	Configuration Options
	JSON Example

	UDP TC Data Link
	Class Name
	Configuration Options

	UDP TM Data Link
	Class Name
	Configuration Options

	CCSDS Frame Processing
	Telemetry Frame Processing
	Telecommand Frame Processing
	Priority Schemes
	COP-1 Support

	Yamcs Cascading Link
	Class Name
	Configuration Options

	Processors
	TM Packet Processing
	Command Processing
	Alarms
	Processor Configuration
	Options
	Alarm options
	TM (container) processing options

	Alarm Reporter
	Class Name
	Configuration
	Configuration Options

	Algorithm Manager
	Class Name
	Configuration
	Configuration Options

	Local Parameter Manager
	Class Name
	Configuration

	Replay Service
	Class Name
	Configuration
	Configuration Options

	Stream Parameter Provider
	Class Name
	Configuration
	Configuration Options

	Stream TC Command Releaser
	Class Name
	Configuration
	Configuration Options

	Stream TM Packet Provider
	Class Name
	Configuration
	Configuration Options

	Commanding
	Command Significance
	Command Queues
	Transmission Constraints

	Services
	Global Services
	HTTP Server
	Class Name
	Configuration
	Configuration Options
	WebSocket sub-configuration
	CORS sub-configuration

	Process Runner
	Class Name
	Configuration
	Configuration Options

	TSE Commander
	Class Name
	Configuration
	Configuration Options
	TCP/IP
	UDP
	Serial Port

	Mission Database
	Telnet Interface

	Replication Server
	Class Name
	Configuration
	Configuration Options

	Instance Services
	Alarm Recorder
	Class Name
	Configuration

	Command History Recorder
	Class Name
	Configuration

	Event Recorder
	Class Name
	Configuration

	CCSDS TM Index
	Class Name
	Configuration
	Configuration Options

	Parameter Archive Service
	Filling the parameter archive
	Class Name
	Configuration
	General Options
	Backfiller Options
	Realtime filler Options

	Parameter List Service
	Class Name
	Configuration
	Configuration Options

	Parameter Recorder
	Class Name
	Configuration
	Configuration Options

	Configuration Options
	Parameter Cache options
	Processor Creator Service
	Class Name
	Configuration
	Configuration Options

	Replay Server
	Class Name
	Configuration

	System Parameters Service
	Class Name
	Configuration
	Configuration Options

	XTCE TM Recorder
	Class Name
	Configuration
	Configuration Options

	Time Correlation Service
	Accuracy and validity
	Verify Only Mode
	Usage
	Time of flight estimation
	Class Name
	Configuration
	Configuration Options

	Timeline Service
	Class Name
	Configuration
	Configuration Options
	Command execution sub-configuration
	Stack execution sub-configuration
	Script execution sub-configuration

	Replication Master
	Class Name
	Configuration
	Configuration Options

	Replication Slave
	Class Name
	Configuration
	Configuration Options

	CCSDS File Delivery Protocol (CFDP)
	Usage
	Class Name
	Configuration
	Configuration Options

	File listing service
	Class Name
	Configuration
	Configuration Options
	Parser Configuration Options
	BasicListingParser
	CsvListingParser

	CFS Event Decoder
	Class Name
	Configuration
	Configuration Options

	Alarm Mirroring
	Class Name
	Configuration
	Configuration Options

	Security
	Configuration
	System Privileges
	Object Privileges
	Superuser
	AuthModules
	LDAP AuthModule
	Class Name
	Configuration Options
	Attributes sub-configuration
	Group Mapping sub-configuration

	YAML AuthModule
	Class Name
	Configuration Options
	users.yaml

	Kerberos AuthModule
	Class Name
	Configuration Options

	Remote User AuthModule
	Class Name
	Configuration Options

	Single User AuthModule
	Class Name
	Configuration Options

	IP Address AuthModule
	Class Name
	Configuration Options
	Example

	SPNEGO AuthModule
	Class Name
	Configuration Options

	OpenID Connect AuthModule
	Class Name
	Configuration Options
	Attributes sub-configuration

	Back-channel Logout
	Note to third-party developers

	Web Interface
	Configuration
	Global Configuration Options
	Instance Configuration Options

	Links
	Algorithms
	Telemetry
	Packets
	Parameters
	Parameter Lists
	Displays
	Replaying telemetry

	Events
	Alarms
	Commanding
	Send a command
	Command stack
	Command history
	Queues

	Procedures
	Run a script

	Activities
	Timeline
	Chart
	Views
	Bands
	Items

	Mission database
	Parameters
	Containers
	Commands
	Algorithms

	Archive browser
	Admin Area
	Admin Home
	Plugins
	Access Control
	Users
	Service accounts
	Groups
	Roles

	Client Connections
	Services
	Processor Types
	Databases
	Tables
	Streams
	DB Shell

	Replication
	Inbound
	Outbound

	RocksDB
	Open databases

	API Routes
	Leap Seconds
	Threads

	Programs
	yamcsadmin
	Synopsis
	Options
	Commands
	yamcsadmin backup
	Synopsis
	Description
	Commands
	Options

	yamcsadmin confcheck
	Synopsis
	Description

	yamcsadmin mdb
	Synopsis
	Description
	Commands

	yamcsadmin password-hash
	Synopsis
	Description
	Environment

	yamcsadmin rocksdb
	Synopsis
	Description
	Commands
	Options

	yamcsadmin users
	Synopsis
	Description
	Commands
	Options
	Environment

	yamcsd
	Synopsis
	Description
	Options
	Environment
	Log Config Example

	Systemd Unit File
	packet-viewer
	Synopsis
	Description
	Options
	Examples
	Configuration Files
	mdb.yaml
	packet-viewer.yaml

	Packet Filter
	Filter on packet properties
	Filter on parameter presence
	Filter grammar

	Configuration Sections
	Command Options
	Registration
	Types
	Permissions

	Yamcs Plugin Format
	Main configuration file
	Plugin metadata

	SQL Language
	Identifiers
	Literals
	Integer Literals
	Float Literals
	String Literals

	Operators
	Object Names
	Expressions
	Functions
	COALESCE()
	UNHEX()
	EXTRACT_SHORT()
	EXTRACT_USHORT()
	EXTRACT_INT()
	EXTRACT_U3BYTES()
	COUNT()
	SUBSTRING()
	SUM()

	Statements
	ALTER SEQUENCE Statement
	ALTER TABLE Statement
	CLOSE STREAM Statement
	CREATE TABLE Statement
	CREATE STREAM Statement
	DELETE Statement
	DESCRIBE Statement
	DROP TABLE Statement
	INSERT Statement
	SELECT TABLE Statement
	SHOW DATABASES Statement
	SHOW ENGINES Statement
	SHOW SEQUENCES Statement
	SHOW STREAMS Statement
	SHOW TABLES Statement
	UPDATE Statement

	Index

